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Supplemental Materials 
MRI data acquisition 
Imaging data were collected using a SIEMENS TRIO 3-Tesla MRI system including DTI data and T1-
weighted images scans. Participants were in a supine position with their head snugly fixed by straps and 
foam pads to minimize head movement. Diffusion-weighted imaging was performed using a single-shot, 
twice-refocused, diffusion-weighted echo planar sequence aligned along the anterior-posterior 
commissural plane. The DTI was acquired according to the following parameters: field of view = 
256×256 mm2, repetition time/echo time = 9500/92 ms, matrix = 128×128, slice thickness = 2 mm, and 
70 continuous axial slices with no gap. Diffusion sensitizing gradients were applied along a 30 nonlinear 
direction (b = 1000 s/mm2) and in one direction for non-diffusion weighting (b = 0 s/mm2). T1-weighted 
images were also acquired to measure the cerebral gray matter density. T1-weighted, sagittal 3D 
magnetization prepared rapid gradient echo (MP-RAGE) sequences were collected using an echo-planar 
imaging sequence that consisted of a 176 sagittal slices, repetition time/echo time = 1900/3.44 ms, slice 
thickness = 1 mm, flip angle = 9°, inversion time = 900 ms, field of view (FOV) = 256×256 mm2, and 
acquisition matrix = 256×256. 
DTI data preprocessing and analysis 
FMRIB’s Diffusion Toolbox (FDT, v3.0) in FMRIB Software Library (FSL, v5.0.10) were used for 
image preprocessing. First, eddy current distortions and motion artifacts were corrected by applying 
affine alignment of each diffusion-weighted image to the b = 0 image. Then, the first volume of the 
diffusion data with no diffusion weighting (i.e., b=0 image) was used to create a brain mask by running 
the Brain Extraction Tool. Finally, we fit a diffusion tensor model at each voxel using DTIFIT. The 
output of DTIFIT yielded voxel-wise maps of fractional anisotropy and axial diffusivity. The fractional 
anisotropy index of DTI is the most sensitive neuroimaging measures of the degeneration observed in 
T2DM patients, and it describes overall white matter health, maturation, and organization (1). Another 
index, axial diffusivity, reflects axon integrity and can be useful in understanding the underlying 
physiology (2). 
Voxel-wise analyses of the fractional anisotropy and axial diffusivity images were carried out using 
Tract-Based Spatial Statistics (TBSS) in FSL. First, each participant’s fractional anisotropy image was 
aligned to the 1×1×1 mm FMRIB58_FA standard space using the nonlinear registration (3). Second, all 
subjects were affine-aligned into a 1×1×1 mm MNI152 space. Third, the mean of all fractional 
anisotropy images was created and fed into the fractional anisotropy skeletonization program to create a 
mean fractional anisotropy skeleton (threshold of 0.2) from all subjects included in this study. Then, the 
4D all fractional anisotropy image (containing all aligned fractional anisotropy data from all subjects) 
was projected onto the mean fractional anisotropy skeleton, and this approach resulted in a 4D image 
file containing the (projected) skeletonized fractional anisotropy data. Finally, we applied TBSS to axial 
diffusion using the fractional anisotropy images to achieve the nonlinear registration and skeletonization 
stages, which resulted in the 4D projected axial diffusion data. Those projected data files were fed into 
voxel-wise statistics.  
Voxel-wise statistical analyses were carried out using nonparametric permutation-based inference tool 
(“randomize”, part of FSL) with the general linear model (GLM) as statistical modeling. First, pair-wise 
group comparisons based on voxel were performed using GLM for T2DM-aMCI versus HC, T2DM-
aMCI versus T2DM-NC, and T2DM-NC versus HC. The fractional anisotropy or axial diffusion at each 
voxel were modeled as a linear combination of predictors (three grouping variables) and covariates (sex, 
age, education, hypertension, hyperlipidemia and cerebrovascular disease) stored in the columns of a 
"design matrix". For subsequent analyses, we calculated white matter volumes in regions with between-
group differences, fractional anisotropy and axial diffusivity at voxels within significant intergroup 
different tracts in combining the T2DM-aMCI and T2DM-NC patients. White matter tracts were 
identified using the JHU_ICBM_tracts_maxprob_thr25 atlas (4). Second, a voxel-wise linear 
relationship was determined using GLM in all T2DM (T2DM-aMCI combined with T2DM-NC). The 
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fractional anisotropy or axial diffusion at each voxel in significant intergroup different tracts is modeled 
as a linear combination of cognitive scores with significant intergroup difference domains and 
covariates. The significance threshold for between-group differences and linear relationships were set at 
p < 0.05 (5000 permutations, familywise error (FWE) correction for multiple comparisons correction) 
using the threshold-free cluster enhancement (TFCE). Next, we extract the mean value of axial 
diffusivity on significantly related fibers for subsequent analyses. Fractional anisotropy of significant 
intergroup different tracts didn’t showed any significant relationships with cognitive measures. 
T1 MRI data processing and analysis 
T1-weighted images were analyzed with the FSL voxel-based morphometry (FSLVBM) pipeline (5). 
First, brain extraction was run on the structural images. Second, all brain-extracted images were 
segmented into gray matter, white matter and cerebrospinal fluid. Third, the symmetric, study-specific 
nonlinear gray matter template in a standard space was created from the segmented (gray matter) images 
with an equal number of T2DM-aMCI patients and T2DM-NC patients who were selected randomly. To 
achieve this, these selected gray matter images were affine-registered to a gray matter ICBM-152 
template, concatenated and then averaged. This averaged image was then flipped along the x-axis and 
the two mirror images, then re-averaged to obtain a symmetric affine gray matter template. And selected 
gray matter images were reregistered to this specific affine gray matter template using nonlinear 
registration, then were concatenated into a 4D image, averaged, and flipped along the x-axis. Both 
mirror images were then averaged to create the final template. Finally, modulation was implemented to 
the contraction/enlargement due to the nonlinear component of the transformation in which each voxel 
of each registered gray matter image is multiplied by the Jacobian of the warp field. All the modulated 
registered gray matter images were concatenated into a 4D image, and the file was fed into voxel-vise 
statistics. 
Next, a voxel-wise linear relationship was determined with GLM in all T2DM using a randomize tool to 
evaluate whether cognitive impairment-related white matter microstructural damage was associated with 
the degeneration of cortex connected to the affected white matter tract. The gray matter density in 
regions of interests (ROIs) at each voxel was modeled as a linear regression of diffusion metrics in 
cognitive impairment-related white matter tracts and covariates (sex, age, education, hypertension, 
hyperlipidemia and cerebrovascular disease). The significance threshold for a linear relationship was set 
at p < 0.05 (5000 permutations, FWE-correction for multiple comparisons). In this study, the gray matter 
ROIs were the lingual  and frontal middle orbital (Frontal_Mid_Orb) with anatomic connections to IFOF 
as well as the temporal inferior (Temporal_Inf) and occipital middle (Occipital_Mid) with anatomic 
connections to ILF (6). 
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Supplementary Figure S1. The mean score of neuropsychological tests in T2DM-aMCI, T2DM-NC 
and HC groups. *p < 0.05, **p < 0.01, ***p < 0.001 after Bonferroni correction. 
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Supplementary Table S1. The below table present the normalized cognitive scores as well in z-values 
and the percentage of patients with a score below 1.5SD (across all participants). 
 

Patients with a score below 1.5SD (N, %)
group T2DM-aMCI T2DM-NC HC 

T2DM-aMCI T2DM-NC 
General Mental status           
MMSE -0.72 ± 1.45 0.08 ± 0.46 0.57 ± 0.22 7 (19.44%) 0 
Episodic Memory      
AVLT-delay recall (N5) -1.14 ± 0.3 0.08 ± 0.73 0.89 ± 0.57 0 0 
AVLT-Total (N1-N5) -1.1 ± 0.34 0.04 ± 0.74 0.9 ± 0.61 4 (11.11%) 4 (10%) 
ROCF-delay recall  -0.71 ± 0.78 -0.1 ± 0.85 0.68 ± 0.87 5 (13.89%) 3 (7.5%) 
Working memory      
Digit Span -0.65 ± 1.03 0.14 ± 0.99 0.38 ± 0.7 8 (22.22%) 4 (10%) 
Digit Span Backward -0.72 ± 0.93 0.23 ± 0.99 0.35 ± 0.74 14 (38.89%) 4 (10%) 
Spatial processing      
ROCF-Copy -0.34 ± 1.36 0.12 ± 0.63 0.17 ± 0.89 3 (8.33%) 1 (2.5%) 
CDT -0.65 ± 1.07 0.16 ± 0.96 0.41 ± 0.65 7 (19.45) 3 (7.5%) 
Executive function      
SCWT-C-B 0.08 ± 1.06 0.04 ± 1.02 -0.16 ± 0.96 2 (5.56%) 0 
TMT-B 0.21 ± 1.16 0.06 ± 1.02 -0.28 ± 0.93 1 (2.78%) 1 (2.5%) 
Language ability      
BNT -0.51 ± 1.22 0.22 ± 0.79 0.23 ± 0.81 12 (33.33%) 3 (7.5%) 
CVFT  -0.69 ± 1 0.08 ± 0.93 0.5 ± 0.71 14 (38.89%) 4 (10%) 
Attention      
SDMT  -0.7 ± 1.09 -0.02 ± 0.88 0.41 ± 1.01 5 (13.89%) 0 
TMT-A 0.37 ± 1.75 -0.08 ± 0.4 -0.25 ± 0.31 0 0 

 

Note: Values are the mean ± standard deviation. MMSE: Mini-Mental State Examination, AVLT: Auditory Verbal 
Learning Test, ROCF: Rey-Osterrieth Complex Figure, CDT: Clock Drawing Test, SCWT: Stroop Color and 
Word Test, TMT: Trail Making Test, BNT: Boston Naming Test, CVFT: Category Verbal Fluency Test, SDMT: 
Symbol Digit Modalities Test. 
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Supplementary Table S2. White matter integrity differences between T2DM-aMCI and HC patients. 

 

Tracts 
 T2DM-aMCI vs HC 

Volumes ( 3mm ) 

1 ATR.L 289 
2 ATR.R 144 
3 CST.L 68 
4 CST.R 105 
5 CG.L 31 
6 CG.R 11 
7 CH.L 0 
8 CH.R 3 
9 Fmaj 252 
10 Fmin 488 
11 IFOF.L 236 
12 IFOF.R 428 
13 ILF.L 61 
14 ILF.R 158 
15 SLF.L 55 
16 SLF.T 230 
17 UF.L 111 
18 UF.R 58 
19 SLF-temp.L 19 
20 SLF-temp.R 77 

 
Results showed radial diffusivity increased of multiple fibers across the whole brain between T2DM-
aMCI and HC group.  
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