Supplementary Figure 1. (A) The percentages of Vβ3+ cells after gating on the CD4+ T cells from spleen of 8-12 week old NODBim−/−, NODBim+/− and NODBim+/+ mice (n=6 for each strain). (B) Representative Bouins’ fixed sections from 10-15 week-old mice were stained with H&E (top 2 rows). Immunofluorescence staining for complement C3 in kidney sections of NODBim−/−, NODBim+/− and NODBim+/+ mice. (C) CFSE-labeled CD8+ T cells isolated from NOD8.3 TCR transgenic mice were injected (4–6 x 10^6 cells/mouse) intravenously into 10-12 weeks old NOD and NODBim+/− mice. Cells were isolated from PLN and ILN 3 days later and analyzed for CFSE dilution by flow cytometry. Representative histogram plot shown. The numbers within the histogram plots indicate percentages of CFSE-low cells. (D) Percentage (mean ± SEM) of transferred cells dividing in NOD and NODBim+/− mice (n = 6 mice per group). (E) Representative plots showing FACS analysis to determine the percentages of InsulinB15-23 tetramer+CD8+ T cells and IGRP206-214 teramer+CD8+ T cells after culturing islets from 10-12 weeks old NODBim−/− and NODBim+/+ mice (n=4-6 per group) in IL-2 for 6 days (with gating on the CD8+ T cells). (F) Representative plots showing percentage of islet infiltrating CD4+ T cells expressing Foxp3 cells in 10-12 weeks old NODBim−/− and NODBim+/+ mice (n=6 per group) (with gating on the CD4+ T cells).
Supplementary Figure 2. (A) Thymus (n=4) derived cells from NODBIM+ mice were analyzed by first gating on live CD4 single positive cells for the proportion of Vβ3 expressing CD4 thymocytes and were further analyzed for the levels of expression of GITR by the gated cells. (B) Cells from thymi or peripheral lymphoid organs (PLO, pooled spleen and non pancreatic lymph nodes) (n=6 in each strain) were enriched for Insulin B9-23 tetramer (or control CLIP tetramer) positive cells and were then analyzed by gating on live CD4 single positive cells for the proportion of CD4 tetramer+ cells expressing GITR. (C) Cells from thymi were enriched for Insulin B9-23 tetramer positive cells and fixed. The cells were then analyzed by gating on live CD4 single positive cells for the proportion of CD4+ tetramer+ cells expressing GITR and Foxp3. (D) Proliferation of sorted CFSE labeled CD4+CD25 GITR+ T cells from NOD mice in response to stimulation with CD3 antibody when cultured with sorted CD25hi or CD25lo, CD4FoxP3+ T cells from NODBIM+/FoxP3.GFP or NODFoxP3.GFP mice.
Supplementary Figure 3. (A) Representative plots of thymocytes from NODBim^+/+, NODBim^+-, and NODBim^-/- mice (n=4 for each strain) were analysed unstimulated (US), and after stimulating with PMA and Ionomycin (Stim) and gating on CD4 single positive subset of T cells. The plots show the percentages of CD4^+ T cells expressing Nur77. (B) Lysates from sorted thymocyte subsets from the indicated mouse strains were examined by Western blotting for their content of total IκBα, phosphorylated (i.e. activated) (p) IκBα and, as a loading control, β-actin. (C) Cell suspensions from the indicated tissues from NOD, NOD Bim^+/+ and NOD Bim^-/- mice were labeled with CD1d/α-GalCer tetramer and mAbs specific for αβTCR, NK1.1, and CD4. Top panels show CD1d/α-GalCer tetramer vs. αβTCR expression by live cells. Bottom panels show CD4 vs. NK1.1 expression by αβTCR^+ CD1d/α-GalCer tetramer^+ cells. Each column represents a sample from the mouse strain indicated. These data are representative of six separate mice. (D and E) Bar graphs showing the mean fluorescence intensity (MFI) of GITR (D) or Nur77 (E) expression in the indicated population of cells. Error bars indicate SD; n = 4 mice per strain. *p<0.05