Supplementary Figure 1. Western blot of CD36 in SR-A^{+/+} and SR-A^{−/−} ATMs. The relative band intensities were normalized to GAPDH. n = 3.

Supplementary Figure 2. Plasma levels of TNFα and IL-1β in SR-A^{+/+} and SR-A^{−/−} mice fed with a chow diet or HFD for 16 weeks were assayed by using ELISA. n = 6. Data are expressed as mean ± SEM. *P < 0.05; ***P < 0.001.
Supplementary Figure 3. Flow cytometric analysis of the SVF cells isolated from epididymal fat pads in SR-A^+/+ and SR-A^-/- mice fed with a chow diet or HFD for 16 weeks. (A) Surface expression of F4/80 and CD11c in cells. Representative plots of the F4/80^+CD11c^+ and F4/80^+CD11c^- cell fractions are shown. n = 4. (B) Surface expression of F4/80 and CD301 in cells. Representative plots of the F4/80^+CD301^+ and F4/80^+CD301^- cell fractions are shown. n = 4. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01.

Supplementary Figure 4. Flow cytometric analysis of the surface expression of F4/80 and CD11c in SVF cells isolated from epididymal fat pads from SR-A^+/+ and SR-A^-/- mice fed with a chow diet or HFD for 16 weeks. Representative plots of the F4/80^+CD11c^+ and F4/80^+CD11c^- cell fractions are shown. n = 4. Data are expressed as mean ± SEM. **P < 0.01; ***P < 0.001.
Supplementary Figure 5. (A) mRNA levels of M2 macrophages associated genes in mice bone marrow cells. Bone marrow cells were treated with M-CSF (50 ng/ml). Levels of mRNA were normalized first to those of GAPDH and then further normalized to the levels of SR-A⁻¹/⁻ bone marrow cells before treatment. n = 4. (B) mRNA levels of M1 macrophages associated genes in mice bone marrow cells. Bone marrow cells were treated with GM-CSF (20 ng/ml). Levels of mRNA were normalized first to those of GAPDH and then further normalized to the levels of SR-A⁻¹/⁻ bone marrow cells before treatment. n = 4. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; *** P < 0.001.
SUPPLEMENTARY DATA

Supplementary Figure 6. (A) Phagocytosis of zymosan by SR-A+/+ and SR-A−/− bone marrow cells. Cells were treated with M-CSF (50 ng/ml) or GM-CSF (20 ng/ml). (B and C) SR-A+/+ and SR-A−/− bone marrow cells chemotaxis in response to 10% FBS (B) and MCP-1 (100 ng/ml) (C) for 4 h. n = 6. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.

Supplementary Figure 7. (A) Plasma levels of LPC in SR-A+/+ and SR-A−/− mice either fed with HFD or chow diet for 16 weeks. (B) LPC levels in epididymal fat tissue in SR-A+/+ and SR-A−/− mice either fed with HFD or chow diet for 16 weeks. n = 4-6. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01.
Supplementary Figure 8. (A) Plasma levels of TG, TC, FFA and LPA in SR-A^{+/+} ob/ob and SR-A^{−/−} ob/ob mice. (B) Plasma levels of TG, TC, FFA and LPA in SR-A^{+/+} and SR-A^{−/−} mice either fed with HFD or chow diet for 16 weeks. (C) The level of TG in adipose tissue. n = 6. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
Supplementary Figure 9. mRNA levels of M2 macrophages associated genes in mice bone marrow cells. Bone marrow cells were treated with M-CSF (50 ng/ml) and then stimulated with LPC (20 μM) for 16 h. Levels of mRNA were normalized first to those of GAPDH and then further normalized to the levels of SR-A⁺/⁻ control cells. n = 4. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.

Supplementary Figure 10. (A) mRNA levels of M2 and M1 macrophages associated genes in mice PMs. PMs were harvested and cultured in vitro. After 1 day, PMs were treated with LPA (10 mM) for 16 h. Levels of mRNA were normalized first to those of GAPDH and then further normalized to the levels of SR-A⁺/⁻ control PMs. n = 4. (B) mRNA levels of M2 and M1 macrophages associated genes in mice PMs. PMs were harvested and cultured in vitro. After 1 day, PMs were treated with LPE (10 mM) for 16 h. Expression levels of mRNA were normalized first to those of GAPDH and then further normalized to the levels of SR-A⁺/⁻ control PMs. n = 4. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01.
Supplementary Figure 11. Isotype control Rat IgG1 Negative Control-488 was used to differentiate F4/80 positive/negative cells. Isotype control Rat IgG1 Negative Control-647 was used to differentiate CD11c and CD301 positive/negative cells.