**Supplemental Figure 1.** Representative plots of the isotype controls, demonstrating a step-by-step approach to flow cytometry analysis. Among SVC of interest selected from AT (gate P1, Panel A), singlet cells were defined (P2, Panel B), followed by their segregation into CD11c⁺ cells (gate 1, Panel C) and CD11b⁺ cells (gate 2, Panel D). E, Based on a combined analysis of CD11b and CD11c markers, three populations were identified: CD11b⁺CD11c⁻ (gate 3), CD11b⁻CD11c⁺ (gate 4) and CD11b⁻CD11c⁻ (gate 5). F, Triple⁺ cells were derived from CD11b⁻CD11c⁺ population (Panel E, gate 4) by adding F4/80 marker. H, Each population from Panel E was further analyzed for CD86⁺ cells (gate 1a). A proportion of up to 1% false positive events were accepted in each isotype control.
Supplementary Figure 2. The effects of gain-and-loss of DC on immune cell infiltration in AT and liver. For Panels A-B, one week after IP injection of $0.5 - 1.0 \times 10^6$ CD11c$^+$ BMDC in 200 ul PBS (DC) or PBS alone (PBS), mononuclear cells from liver and spleen and SVC from AT were isolated from mice fed the SCD and analyzed by flow cytometry for CD11b$^-$CD11c$^+$ cells (Panel A) and CD3$^+$CD4$^+$ (Panel B). Anti-CD3-Alexa 780 (eBiosciences) and anti-CD4-PerCP (BD Biosciences) were used to evaluate T cells. Results are presented as means ± SE ($n = \text{minimum of 6 animals/group}$). Significant differences are indicated (*, $p < 0.05$). For Panels C-D, wild type (WT) and flt3l$^{-/-}$ (Null) mice were fed HFD for 16 wks prior to isolation of mononuclear cells from liver, spleen, and AT SVC for analysis of CD11b$^-$CD11c$^+$ (Panel C) and CD3$^+$CD4$^+$ cells (Panel D) by flow cytometry. Results are presented as means ± SE ($n = \text{minimum of 5 animals/group}$). Significant differences are indicated (*, $p < 0.05$). For Panels E-F, flt3l$^{-/-}$ mice were injected IP with either 10 ug human recombinant flt3l in 100 $\mu$l PBS (Flt3L) or PBS alone (PBS) every other day for 2 wks. Subsequently, mononuclear cells from liver, spleen and AT SVC were isolated and stained for analysis by flow cytometry for CD11b$^-$CD11c$^+$ (Panel E) and CD3$^+$CD4$^+$ (Panel F). Results are presented as means ± SD ($n = 2 \text{ animals/group}$).
Supplementary Figure 3. The effects of CD11c+ BMDC injections on cytokine production by SVC from AT. One week after IP injection of 0.5 – 1.0 x 10^6 immature CD11c+ BMDC in 200 ul PBS (DC) or PBS alone (PBS), SVC were isolated from AT of mice fed the SCD and cultured at 2 x 10^5 cells/well in serum free AIM-V medium for 19 hours. Collected supernatants were assayed for the presence of various cytokines/chemokines using a Milliplex Luminex Kit (Millipore, Billerica, MA), according to the manufacturer’s instructions. Results are presented as means ± SD (n = 3 animals/group). Significant differences are indicated (*, p < 0.05). TNF, tumor necrosis factor; IFNγ, interferon-γ; GM-CSF, granulocyte–macrophage colony-stimulating factor; IL, interleukin; MCP, monocyte chemotactic protein; MIG, monokine-induced by γ-interferon.