Supplement to:

Pigeyre M, Sjaarda J, Chong M, Hess S, Bosch J, Yusuf S, Gerstein H, Paré G. Angiotensin-converting enzyme and type 2 diabetes risk: a Mendelian randomization study

TABLE OF CONTENTS

Part 1 - Additional materials	2
Supplementary Material 1. Genotyping, imputation procedures, and quality control steps	2
Supplementary Material 2. Design of meta-analysis of ACE inhibitors vs. placebo RCTs	3
Supplementary Material 3. Standardization of the ACE GRS for mean arterial blood pressure change	5
Part 2 - Additional tables	6
Supplementary Table 1. Studies including in DIAGRAM consortium	6
Supplementary Table 2. List of biomarkers	7
Supplementary Table 3. Characteristics of ORIGIN participants	13
Supplementary. Table 4. Single nucleotide polymorphisms associated with ACE serum levels and included in	n the
Mendelian randomization analysis of type 2 diabetes risk	14
Supplementary Table 5. Characteristics of UK Biobank participants	15
Supplementary. Table 6. MR associations of ACE concentrations with body mass index and 15 glucose-	- and
insulin-related traits available in the GIANT (16) and the MAGIC consortia (17)(18)(19)(20)	16
Part 3 - Additional figures	17
Supplementary Figure 1. Association of ACE GRS with ACE serum levels in ORIGIN participants	17
Supplementary. Figure 2. Association of ACE concentration change with risk of type 2 diabetes using a	two-
sample MR	18
Supplementary. Figure 3. Forest plot of the association of ACE inhibitors and new-onset type 2 diabetes (T2D)) risk
	10

SUPPLEMENTARY DATA Part 1 - Additional materials Supplementary Material 1. Genotyping, imputation procedures, and quality control steps

ORIGIN cohort

Individuals were genotyped on the HumanCore Exome chip (Illumina). Quality control steps were performed using PLINK (1) and GCTA (Genome-wide Complex Trait Analysis) (2). Imputation was performed using IMPUTE2 software (3) with 1000 Genomes Project data (4) as the reference panel. SNPs imputed with low certainty were removed (INFOscore < 0.6).

UK Biobank cohort

Individuals were genotyped using either the UK Biobank Array or the UK BiLEVE array. Phasing and imputation were performed using SHAPEIT3 (5) and IMPUTE2 (3), respectively, against a combined haplotype reference panel including UK10K (6) and 1000 Genomes Phase 3 (4). In addition to excluding samples belonging to the standard UK Biobank genomic analysis exclusion list, further quality control of samples was performed. Related samples, samples with low call rates (< 99%), inconsistent reported sex versus genetic sex, non-British ancestry, or quality control failure in the UK BiLEVE array were removed. Variants with low call rates (< 95%), low imputation quality (INFOscore < 0.6), low minor allele frequency (MAF < 0.01), or suggestive evidence for poor genotype calling (Hardy Weinberg Equilibrium $P < 10^{-6}$) were also removed.

SUPPLEMENTARY DATA Supplementary Material 2. Design of meta-analysis of ACE inhibitors vs. placebo RCTs

Methods

Eligibility criteria

Studies were considered for inclusion if they met the following criteria:

1) type of study design was randomized, doubled-blind, controlled trials (RCTs);

2) compared an ACEI (i.e. benazepril, captopril, enalapril, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, trandolapril) with placebo. There were no restrictions based on the frequency, dosage, length or duration of the ACE inhibitor intervention;

3) reporting the incidence of new-onset diabetes;

4) conducted on adult participants aged \geq 18 years;

5) published in English.

Information sources and search

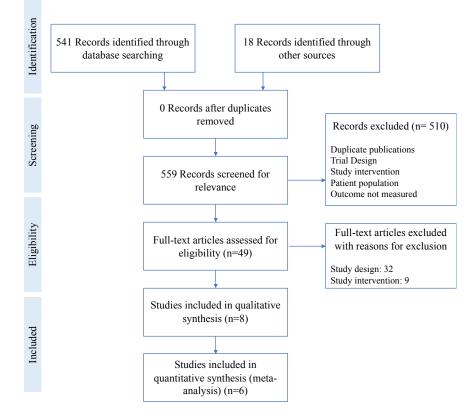
We searched PubMed using the MeSH terms: (antihypertensive agents [MeSH Terms] OR angiotensinconverting enzyme inhibitors[MeSH Terms]) AND diabetes mellitus[MeSH Terms] AND (randomized controlled trial[MeSH Terms] OR meta-analysis[MeSH Terms]). This search was applied to PubMed on May 9, 2019.

Study selection, data collection process and data items

Based on the results of the search strategy, titles and abstracts for each reference were examined independently by two reviewers (MP and GP). Relevant studies obtained from the full-text screening phase were reviewed for methodological quality and disagreements were resolved through discussion between reviewers. The following information was extracted from each included trial: (1) characteristics of the study participants (i.e. age, sex, body mass index, ethnicity or country of origin); (2) characteristics of the study (i.e., study design, sample size, median follow-up period); (3) characteristics of the intervention (i.e. ACE inhibitor name, dose and frequency of the intervention, blood pressure-lowering effect); and (4) characteristics of the outcome measures (ie, criteria for defining diabetes, number of new-onset diabetes during follow-up).

Summary measures

The treatment effect on diabetes incidence was expressed as an odds ratio (OR) with the 95% CI and p-value.


Summary results

Random effects model was used for statistical analysis due to wide clinical and methodological variability across the trials. Heterogeneity was tested using restricted maximum-likelihood estimation (REML) as recommended for meta-analysis with a small number of included studies (7), and inconsistency (I^2) was measured by assessing the percentage of total variation of the effects of ACE inhibitors across studies due to heterogeneity. A low p-value (p<0.10) or I^2 of > 30% provided evidence of heterogeneity of intervention effects.

Results

Study characteristics

A total of 6 studies were identified for inclusion in this review. The structured literature search of PubMed databases derived a total of 541 citations and 18 additional citations revealed by scrutinizing the reference lists of identified studies. Of these, 510 studies were discarded because after reviewing the abstracts it appeared that these papers clearly did not meet our inclusion criteria. The full-text of the remaining 49 citations were examined in more detail. It appeared that 41 articles did not meet the inclusion criteria. Of the included articles, there were six RCTs (8)(9)(10)(11)(12)(13) enrolling a total of 31,200 participants. (see below the flow diagram of the study selection process).

Study flow diagram for the meta-analysis of ACE inhibitors vs. placebo

SUPPLEMENTARY DATA Supplementary Material 3. Standardization of the ACE GRS for mean arterial blood pressure change

The ACE GRS was standardized to be given in genetically determined ACE concentration equivalent to a 2.4 mmHg lower MAP. We estimated the relationship between MAP and *ACE GRS* in the UK Biobank participants lacking type 2 diabetes (N=326,508), using a linear regression model, in which MAP (measured in mmHg) was the dependent variable and ACE GRS was the independent variable of interest. We next used the regression coefficient (β) obtained from this linear model to rescale the *ACE GRS* such that *ACE GRS_{standardized}* was equal to the product of *ACE GRS** β *2.4, such that 1 higher score unit corresponded to a genetically ACE concentration change associated with a 2.4 mmHg lower MAP. Then, we performed a logistic regression to estimate the association between type 2 diabetes prevalence (dependent variable) and *ACE GRS_{standardized}* (independent variable) in the UK Biobank participants. This model was adjusted for age, sex, ACE inhibitor usage at baseline, and the first ten principal components.

SUPPLEMENTARY DATA **Part 2 - Additional tables**

Study name	Study design	Ethnicity	Total sample size (N [cases / controls])		
ARIC	population-based	White European	755/7009		
BioMe^ (Affy)	population-based	White European	132/455		
BioMe^ (Illumina)	population-based	White European	255/1647		
deCODE	population-based	White European	7339/83049		
DGDG	Case-control	White European	679/697		
DGI	T2D Case-Control	White European	1023/1074		
EGCUT-370	population-based	White European	80/1768		
EGCUT-OMNI	population-based	White European	389/6013		
EPIC-InterAct	case-control nested into population-based	White European	4624/4668		
FHS	family-based	White European Americans	673/7660		
FUSION	Case-control	White European	1161/1174		
GoDARTS	Case-Control	White European	3298/2643		
HPFS	population-based	White European	1124/1298		
KORAgen	population-based	White European	347/1550		
NHS	population-based	White European	1467/1754		
PIVUS	population-based	White European	111/838		
RS-I	population-based	White European	654/5219		
ULSAM	population-based	White European	166/953		
WTCCC	population-based	White European	1924/2938		

Supplementary Table 1. Studies including in DIAGRAM consortium

Adapted from Scott et al. (14)

SUPPLEMENTARY DATA Supplementary Table 2. List of biomarkers

	Biomarker	Gene	Inter-Run CV at Intermediate Concentrations
1	6Ckine	CCL21	13%
2	Adiponectin	ADIPOQ	4%
3	Adrenomedullin	ADM	7%
4	Agouti-Related Protein	AGRP	7%
5	Aldose Reductase	AKR1B1	11%
6	Alpha-1-acid glycoprotein 1	ORM1	15%
7	Alpha-1-Antichymotrypsin	SERPINA3	6%
8	Alpha-1-Antitrypsin	SERPINA1	14%
9	Alpha-1-Microglobulin	AMBP	5%
10	Alpha-2-Macroglobulin	A2M	6%
11	Angiogenin	ANG	10%
12	Angiopoietin-2	ANGPT2	6%
13	Angiopoietin-related protein 3	ANGPTL3	8%
14	Angiotensin-Converting Enzyme	ACE	12%
15	Angiotensinogen	AGT	6%
16	Antithrombin-III	SERPINC1	6%
17	Apolipoprotein A-I	APOA1	10%
18	Apolipoprotein A-II	APOA2	8%
19	Apolipoprotein A-IV	APOA4	9%
20	Apolipoprotein B	APOB	9%
21	Apolipoprotein C-I	APOC1	9%
22	Apolipoprotein C-III	APOC3	20%
23	Apolipoprotein D	APOD	18%
24	Apolipoprotein E	APOE	20%
25	Apolipoprotein H	APOH	12%
26	Apolipoprotein(a)	LPA	16%
27	AXL Receptor Tyrosine Kinase	AXL	10%
28	B cell-activating factor	TNFSF13B	9%
29	B Lymphocyte Chemoattractant	CXCL13	10%
30	Beta Amyloid 1-40	APP	13%
31	Beta-2-Microglobulin	B2M	13%
32	Brain-Derived Neurotrophic Factor	BDNF	5%
33	C-Peptide	INS	4%
34	C-Reactive Protein	CRP	13%
35	Cathepsin D	CTSD	9%
36	CD 40 antigen	<i>CD40</i>	8%
37	CD163	CD163	11%
38	CD40 Ligand	CD40LG	9%
39	CD5 Antigen-like	CD5L	14%
40	Cellular Fibronectin	FN1	17%
41	Chemerin	RARRES2	4%
42	Chemokine CC-4	CCR4	7%
43	Chromogranin-A	CHGA	7%
44	Clusterin	CLU	10%

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2020} American Diabetes Association. Published online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-1973/-/DC1 and the second sec$

45	Collagen IV	COL4A1,COL4A2,COL4A3,COL 4A4,COL4A5,COL4A6	14%		
46	Complement C3	СЗ	10%		
47	Complement Factor H Related Protein 1	CFHR1	9%		
48	Cortisol	NA	8%		
49	Creatine Kinase-MB	СКМ,СКВ	12%		
50	Cystatin-C	CST3	8%		
51	E-Selectin	SELE	5%		
52	EN-RAGE	S100A12	4%		
53	Endoglin	ENG	8%		
54	Endostatin	COL18A1	10%		
55	Eotaxin-1	CCL11	11%		
56	Eotaxin-2	CCL24	9%		
57	Eotaxin-3	CCL26	16%		
58	Epithelial-Derived Neutrophil- Activating Protein 78	CXCL5	12%		
59	Erythropoietin	EPO	10%		
60	Ezrin	EZR	10%		
61	Factor VII	F7	4%		
62	Fas Ligand	FASLG	8%		
63	FASLG Receptor	TNFRSF6B	2%		
64	Fatty Acid-Binding Protein adipocyte	FABP4	6%		
65	Fatty Acid-Binding Protein liver	FABP1	12%		
66	Ferritin	FTL,FTH1	6%		
67	Fetuin-A	AHSG	17%		
68	Fibroblast Growth Factor 21	FGF21	12%		
69	Fibroblast growth factor 23	FGF23	9%		
70	Fibulin-1C	FBLN1	9%		
71	Ficolin-3	FCN3	7%		
72	Follicle-Stimulating Hormone	FSHB,CGA	16%		
73	Galectin-3	LGALS3	8%		
74	Gastric inhibitory polypeptide	GIP	12%		
75	Gelsolin	GSN	12%		
76	Glucagon-like Peptide 1 total	GCG	7%		
77	Glucose-6-phosphate Isomerase	GPI	7%		
78	Glutathione S-Transferase alpha	GSTA1,GSTA2,GSTA3,GSTA4,G STA5	11%		
79	Glycogen phosphorylase isoenzyme BB	PYGB	6%		
80	Granulocyte Colony-Stimulating Factor	CSF3	6%		
81	Growth differentiation factor 15	GDF15	10%		
82	Growth Hormone	GH1,GH2	9%		
83	Growth-Regulated alpha protein	CXCL1	5%		
84	Haptoglobin	НР	8%		
85	Heat-Shock protein 70	HSPA1A,HSPA1B,HSPA1L,HSP A2,HSPA4,HSPA4L,HSPA5,HSP A6,HSPA8,HSPA9,HSPA12A,HS PA12B,HSPA13,HSPA14	8%		
86	Hemopexin	НРХ	9%		

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2020} American Diabetes Association. Published online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-1973/-/DC1 and the second sec$

	ENTAKY DATA		
87	Hepatocyte Growth Factor	HGF	18%
88	Hepatocyte Growth Factor	MET	13%
89	receptor Hepsin	HPN	4%
90	Human Epidermal Growth Factor	ERBB2	2%
	Receptor 2		
91	Immunoglobulin A	IGH	11%
92	Immunoglobulin E	IGH	4%
93	Immunoglobulin M	IGH	19%
94	Insulin	INS	7%
95	Insulin-like Growth Factor Binding Protein 4	IGFBP4	6%
96	Insulin-like Growth Factor Binding Protein 5	IGFBP5	8%
97	Insulin-like Growth Factor Binding Protein 6	IGFBP6	17%
98	Insulin-like Growth Factor I	IGF1	8%
99	Insulin-like Growth Factor- Binding Protein 1	IGFBP1	8%
100	Insulin-like Growth Factor- Binding Protein 2	IGFBP2	7%
101	Insulin-like Growth Factor- Binding Protein 3	IGFBP3	9%
102	Intercellular Adhesion Molecule	ICAM1	7%
103	Interferon gamma	IFNG	11%
104	Interferon gamma Induced Protein 10	CXCL10	8%
105	Interferon-inducible T-cell alpha chemoattractant	CXCL11	16%
106	Interleukin-1 beta	IL1B	10%
107	Interleukin-1 receptor antagonist	ILIRN	6%
108	Interleukin-10	IL10	8%
109	Interleukin-12 Subunit p40	IL12B	7%
110	Interleukin-16	IL16	5%
111	Interleukin-17	IL17A	6%
112	Interleukin-18	IL18	9%
113	Interleukin-2	IL2	8%
114	Interleukin-2 receptor alpha	IL2RA	2%
115	Interleukin-23	IL23A,IL12B	9%
116	Interleukin-6	IL6	6%
117	Interleukin-6 receptor	IL6R	6%
118	Interleukin-6 receptor subunit beta	IL6ST	9%
119	Interleukin-7	IL7	6%
120	Interleukin-8	CXCL8	8%
121	Kallikrein 5	KLK5	14%
122	Kidney Injury Molecule-1	HAVCR1	9%
123	Lactoferrin	LTF	9%
124	Lactoylglutathione lyase	GL01	6%
125	Latency-Associated Peptide of Transforming Growth Factor	LTBP1	7%
126	beta 1 Lectin-Like Oxidized LDL Receptor 1	OLR1	4%

©2020 American Diabetes Association. Published online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-1973/-/DC1

161	Associated Lipocalin Omentin	ITLN1	11%
160	Neutrophil Gelatinase-	LCN2	12%
159	Neutrophil Activating Peptide 2	PPBP	7%
158	Neuropilin-1	NRP1	11%
157	Neuronal Cell Adhesion Molecule	NRCAM	5%
156	N-terminal prohormone of brain natriuretic peptide	NPPB	5%
155	Myoglobin	MB	6%
154	Myeloperoxidase	МРО	16%
153	Myeloid Progenitor Inhibitory Factor 1	CCL23	4%
152	Monokine Induced by Gamma Interferon	CXCL9	10%
151	Monocyte Chemotactic Protein 4	CCL13	7%
150	Monocyte Chemotactic Protein 3	CCL7	7%
149	Monocyte Chemotactic Protein 2	CCL8	6%
148	Monocyte Chemotactic Protein 1	CCL2	5%
147	MHC class I chain-related protein A	MICA	5%
146	Methylglyoxal	NA	9%
145	Mesothelin	MSLN	10%
144	Matrix Metalloproteinase-9 total	MMP9	14%
143	Matrix Metalloproteinase-9	ММР9	6%
142	Matrix Metalloproteinase-7	MMP7	12%
140	Matrix Metalloproteinase-3	MMP3	9%
139	Matrix Metalloproteinase-10	MMP10	11%
138	Matrix Metalloproteinase-1	MST1 MMP1	12%
137	Macrophage-Stimulating Protein	MST1	<u> </u>
130	Inhibitory Factor Macrophage-Derived Chemokine	CCL22	9%
136	Protein-3 alpha Macrophage Migration	MIF	6%
135	Protein-1 beta Macrophage Inflammatory	CCL20	4%
134	Protein-1 alpha Macrophage Inflammatory	CCL4	6%
132	protein 3 beta Macrophage Inflammatory	CCL3	7%
131	Factor 1 Macrophage inflammatory	CCL19	10%
130	Macrophage Colony-Stimulating	CSF1	5%
130	glycoprotein Luteinizing Hormone	LHB,CGA	6%
129	Leucine-rich alpha-2-	LRG1	4%
128	Leptin Receptor	LEPR	11%

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2020} American Diabetes Association. Published online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-1973/-/DC1 and the second sec$

LEMF	ENTARY DATA		
168	Pentraxin-3	PTX3	12%
169	Pepsinogen I	NA	6%
170	Peptide YY	РҮҮ	7%
171	Periostin	POSTN	11%
172	Peroxiredoxin-4	PRDX4	8%
173	Phosphoserine Aminotransferase	PSAT1	7%
174	Pigment Epithelium Derived Factor	SERPINF1	7%
175	Plasminogen Activator Inhibitor 1	SERPINE1	8%
176	Platelet-Derived Growth Factor BB	PDGFB	6%
177	Progesterone	NA	8%
178	Progranulin	GRN	6%
179	Proinsulin Intact	INS	5%
180	Proinsulin Total	INS	6%
181	Prolactin	PRL	15%
182	Prostasin	PRSS8	6%
183	Prostatic Acid Phosphatase	ACPP	11%
184	Protein S100-A4	S100A4	7%
185	Protein S100-A6	S100A6	8%
186	Pulmonary and Activation- Regulated Chemokine	CCL18	10%
187	Receptor for advanced glycosylation end products	AGER	5%
188	Receptor tyrosine-protein kinase erbB-3	ERBB3	10%
189	Resistin	RETN	8%
190	Retinol-binding protein 4	RBP4	13%
191	Secreted frizzled-related protein 4	SFRP4	12%
192	Selenoprotein P	SEPP1	6%
193	Serotransferrin	TF	8%
194	Serum Amyloid A Protein	SAA1,SAA2,SAA4,SAA3P	11%
195	Serum Amyloid P-Component	APCS	10%
196	Serum Glutamic Oxaloacetic Transaminase	GOT1,GOT2	12%
197	Sex Hormone-Binding Globulin	SHBG	14%
198	Sortilin	SORT1	5%
199	ST2	IL1RL1	11%
200	Stem Cell Factor	KITLG	6%
201	Stromal cell-derived factor-1	CXCL12	10%
202	Superoxide Dismutase 1 soluble	SOD1	7%
203	T Lymphocyte-Secreted Protein I-309	CCLI	11%
204	T-Cell-Specific Protein RANTES	CCL5	16%
205	Tamm-Horsfall Urinary Glycoprotein	UMOD	17%
206	Tenascin-C	TNC	4%
		274	70/
207	Testosterone Total	NA	7%
207 208	Testosterone Total Tetranectin	NA CLEC3B	15%

 $\label{eq:constraint} \ensuremath{\mathbb{C}}\xspace{2020} American Diabetes Association. Published online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc19-1973/-/DC1 and the state of the$

LENI	ENTARY DATA		
210	Thrombomodulin	THBD	7%
211	Thrombospondin-1	THBS1	14%
212	Thyroid-Stimulating Hormone	TSHB,CGA	8%
213	Thyroxine-Binding Globulin	SERPINA7	15%
214	Tissue Inhibitor of Metalloproteinases 1	TIMP1	7%
215	Tissue type Plasminogen activator	PLAT	5%
216	TNF-Related Apoptosis-Inducing Ligand Receptor 3	TNFRSF10C	7%
217	Transthyretin	TTR	8%
218	Trefoil Factor 3	TFF3	7%
219	Troponin		4%
220	Tumor Necrosis Factor alpha	TNF	5%
221	Tumor necrosis factor receptor 2	TNFRSF1B	7%
222	Tumor Necrosis Factor Receptor I	TNFRSF1A	8%
223	Tyrosine kinase with Ig and EGF homology domains 2	TIE1	7%
224	Urokinase-type Plasminogen Activator	PLAU	9%
225	Urokinase-type plasminogen activator receptor	PLAUR	8%
226	Vascular Cell Adhesion Molecule-1	VCAM1	8%
227	Vascular Endothelial Growth Factor	VEGFA	7%
228	Vascular Endothelial Growth Factor C	VEGFC	10%
229	Vascular endothelial growth factor D	FIGF	7%
230	Vascular Endothelial Growth Factor Receptor 2	FLT1	6%
231	Vascular endothelial growth factor receptor 3	FLT4	7%
232	Visceral adipose tissue derived serpin A12	SERPINA12	7%
233	Visfatin	NAMPT	15%
234	Vitamin D-Binding Protein	GC	11%
235	Vitamin K-Dependent Protein S	PROS1	9%
236	Vitronectin	VTN	18%
237	von Willebrand Factor	VWF	12%
238	YKL-40	CHI3L1	8%

The respective CVs are from the customized validation report provided by Myriad RBM Inc. for the biomarkers assayed for this study (15); the company's White Paper on Quality systems was accessed at https://myriadrbm.com/scientific-media/quality-control-systems-white-paper/.

SUPPLEMENTARY DATA Supplementary Table 3. Characteristics of ORIGIN participants

Variables	Proteomic study participants (n=8197)	Genetic study participants (n=4147)
Age (years)	63.72 (7.94)	63.45 (7.98)
Sex (% male)	66.11	64.14
Ethnicity - Europeans (%)	55.41	46.56
- Latin Americans (%)	34.28	53.44
- South Asian (%)	5.49	-
- Black (%)	4.36	-
- South East Asian (%)	0.46	-
Smoking (%, ever)	60.10	60.16
Body mass index (kg/m ²)	30.04 (5.27)	30.45 (5.33)
Prior type 2 diabetes (%)	81.66	87.56
Fasting plasma glucose (mmol/L)	7.33 (2.02)	7.58 (2.17)
HbA ₁ c (%)	6.5 (0.95)	6.6 (0.98)
(mmol/mol)	48.0 (10.4)	49.0 (10.7)
Prior hypertension (%, yes)	78.91	82.9
LDL (mmol/L)	2.89 (1.03)	3.07 (1.05)
HDL (mmol/L)	1.18 (0.32)	1.17 (0.32)
Triglycerides (mmol/L)	1.89 (1.24)	1.93 (1.17)
Prior cardio-vascular event (%, yes)	59.57	53.29
ACE inhibitor usage at baseline (%, yes)	57.59	63.25

Data are presented as mean (SD) unless stated otherwise.

Supplementary Table 4. Single nucleotide polymorphisms associated with ACE serum levels and included in the Mendelian randomization analysis of type 2 diabetes risk

Biomarker	Gene	SNP	Genomic position	Effect/ Other allele	EAF Europeans (ORIGIN, n=1931)	EAF Latin Americans (ORIGIN, n=2216)	Regression coefficient (se) of ACE level per allele	P-value	Proportion of variance explained of ACE level	F- statistic	OR (95%Cl) for type 2 diabetes per allele	P-value
ACE	ACE	rs4343	17:61566031	A/G	0.45	0.46	-0.63 (0.02)	1.53x10 ⁻²¹³	0.21	64.23	0.97 (0.94-0.99)	0.01
		rs1074637	17:61442830	T/C	0.90	0.91	-0.24 (0.04)	4.40x10 ⁻⁹	0.01	2.03	1.00 (0.96-1.05)	0.86
		rs11650201	17:61544349	G/T	0.16	0.18	-0.28 (0.03)	2.69x10 ⁻¹⁸	0.02	4.49	0.97 (0.94-1.02)	0.21
		rs117808108	817:61641531	T/C	0.89	0.94	-0.12 (0.04)	1.13x10 ⁻³	0.00	0.62	1.04 (1.00-1.08)	0.068
		rs12452187	17:61648920	A/G	0.60	0.61	-0.23 (0.02)	2.53x10 ⁻²⁷	0.03	6.96	0.97 (0.94-0.99)	0.012
		rs12602457	17:61330017	G/T	0.85	0.89	-0.23 (0.03)	2.64x10 ⁻¹⁴	0.01	3.41	0.99 (0.95-1.03)	0.59
		rs13342595	17:61488575	C/T	0.23	0.24	-0.14 (0.02)	2.48x10 ⁻⁹	0.01	2.10	0.98 (0.95-1.01)	0.17
		rs1443431	17:61373314	A/G	0.03	0.04	-0.24 (0.05)	4.20x10 ⁻⁶	0.01	1.24	1.02 (0.96-1.08)	0.58
		rs2137143	17:61805401	T/G	0.96	0.98	-0.35 (0.06)	7.50x10 ⁻⁹	0.01	1.97	0.97 (0.92-1.02)	0.28
		rs4313	17:61561017	C/T	0.96	0.04	-0.24 (0.05)	1.53x10 ⁻⁵	0.00	1.10	1.02 (0.97-1.09)	0.43
		rs4968780	17:61538867	C/A	0.05	0.06	-0.28 (0.05)	1.86x10 ⁻⁸	0.01	1.86	0.96 (0.91-1.02)	0.23
		rs71377703	17:61765115	C/T	0.90	0.86	-0.18 (0.04)	1.07x10 ⁻⁶	0.01	1.40	0.94 (0.88-1.00)	0.042
		rs72845888	17:61667008	T/C	0.05	0.03	-0.26 (0.05)	1.50x10 ⁻⁷	0.01	1.62	0.90 (0.86-0.95)	9.60x10 ⁻⁵
		rs72847305	17:61741113	A/G	0.10	0.09	-0.33 (0.04)	4.52x10 ⁻¹⁷	0.02	4.17	0.95 (0.90-0.99)	0.025
		rs74251225	17:61365909	G/A	0.04	0.13	-0.26 (0.04)	1.57x10 ⁻¹⁰	0.01	2.41	0.93 (0.84-1.03)	0.16
		rs75457471	17:61848360	A/G	0.38	0.40	-0.19 (0.02)	8.10x10 ⁻¹⁵	0.01	3.55	0.98 (0.94-1.01)	0.22
		rs79480822	17:61654225	C/T	0.93	0.97	-0.55 (0.05)	6.37x10 ⁻²⁴	0.02	6.03	0.95 (0.89-1.01)	0.071

SNP: single nucleotide polymorphism, EAF: effect allele frequency, SE: standard error, OR: odd ratio, CI: confidence interval.

The proportion of variance explained for each SNPs was calculated as follows: R¹2 = (20¹2 DAP(1 - DAP))/(20¹2 DAP(1 - DAP) + ([se] ¹2 2N + DAP(1 - DAP))

$$= \frac{N-k-1}{R^2}$$

The F-statistic for each SNP was calculated as follows: $k = \frac{1-R^2}{1-R^2}$

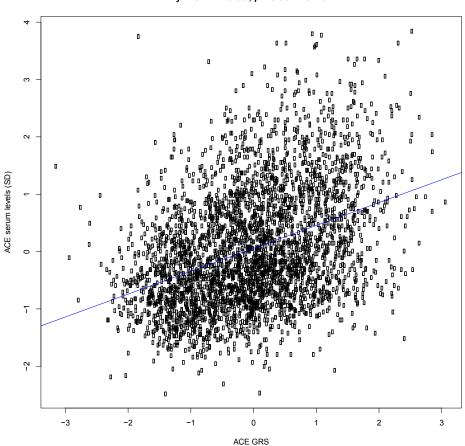
Where β was the regression coefficient, EAF the effect allele frequency, se the standard error, N the sample size, k the number of SNPs.

The total variance explained by the 17 SNPs was calculated by summing the variance explained by each SNP.

The total F-statistic was calculated from the total variance explained according to the aforementioned equation.

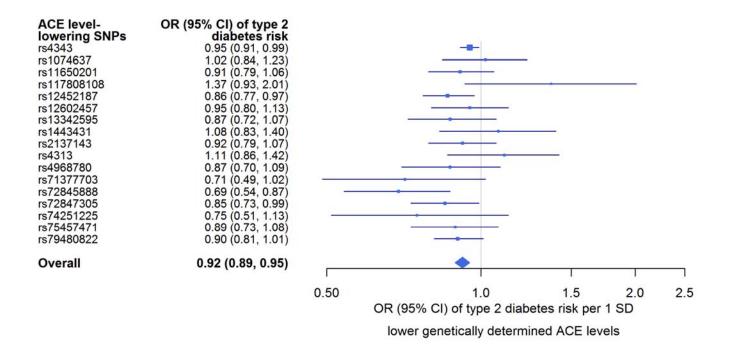
SUPPLEMENTARY DATA Supplementary Table 5. Characteristics of UK Biobank participants

Variables	Participants (n= 341,872)
Age (years)	56.87 (8.00)
Sex (% male)	46.18
Body mass index (kg/m ²)	27.39 (4.75)
Type 2 diabetes (%)	4.77
Mean arterial blood pressure (mmHg)	101.55 (12.46)
Fasting plasma glucose (mmol/L)	5.12 (1.21)
HbA1c (mmol/mol)	35.93 (6.49)
ACE inhibitor usage at baseline (%)	10.07


Data are presented as mean (SD) unless stated otherwise.

Supplementary Table 6. MR associations of ACE concentrations with body mass index and 15 glucose- and insulin-related traits available in the GIANT (16) and the MAGIC consortia (17)(18)(19)(20)

Trait	Sample size	Unit	Beta coefficient per 1 SD lower genetically determined ACE level	95% Lower Cl	95% Upper Cl	P-value	Number of <i>cis</i> ACE SNPs	Author	Minimum effect size detectable for a P-value < 0.05 and a power of 80%
Body mass index	339224	SD (kg/m2)	-0.0177	-0.028	-0.0074	7.42x10-4	6	Locke AE	0.002
Insulin at 30 minutes during oral glucose tolerance test	4483	SD	-0.0870	-0.1467	-0.0273	0.0043	7	Prokopenko I	0.016
Insulin sensitivity index (ISI)	4769	SD	0.0701	0.0108	0.1294	0.0206	7	Prokopenko I	0.016
Fasting proinsulin	10701	log pmol/L	-0.0244	-0.0495	0.0008	0.0573	8	Dupuis J	0.011
Insulin disposition index (IDI) during oral glucose tolerance test	5130	SD	0.0529	-0.0023	0.1081	0.0603	7	Prokopenko I	0.015
Glycated hemoglobin	46368	%	-0.0091	-0.024	0.0058	0.229	9	Soranzo N	0.005
Incremental insulin at 30 minutes adjusted for insulin sensitivty index	4789	SD	0.0324	-0.0265	0.0913	0.2812	7	Prokopenko I	0.016
Corrected insulin response during oral glucose tolerance test	4447	SD	-0.0355	-0.1066	0.0356	0.3277	8	Prokopenko I	0.016
Insulin secretion	4789	SD	0.0230	-0.0333	0.0792	0.4242	7	Prokopenko I	0.016
Fasting insulin	38238	log pmol/L	-0.0052	-0.0207	0.0103	0.5112	8	Dupuis J	0.006
Homeostatic model assessment for beta-cell function (HOMA-B)	46186	log HOMA	-0.0028	-0.0155	0.0099	0.6672	8	Dupuis J	0.005
Area under the curve of insulin levels during oral glucose tolerance test	4324	SD (mU*min/l)	-0.0115	-0.0851	0.0621	0.7591	8	Prokopenko I	0.017
Fasting glucose	46186	mmol/L	0.0013	-0.0114	0.0141	0.8397	8	Dupuis J	0.005
Ratio of the area under the curve for insulin and glucose levels	4213	SD	0.0038	-0.0704	0.078	0.9204	8	Prokopenko I	0.017
2 hour glucose adjusted for BMI	15234	mmol/L	0.0014	-0.0508	0.0537	0.9568	7	Saxena R	0.009
Homeostatic model assessment for insulin resistance (HOMA-IR)	46186	log HOMA	-0.0004	-0.0163	0.0156	0.9642	8	Dupuis J	0.005


Part 3 - Additional figures

Supplementary Figure 1. Association of *ACE GRS* with ACE serum levels in ORIGIN participants Scatter plot represents individual data point of ORIGIN participants, with *ACE GRS* plotted in x-axis and ACE serum levels plotted in Y-axis. The line represents the regression line of the association of *ACE GRS* with ACE serum levels. Equation of the regression line is shown on the top of the figure.

Supplementary Figure 2. Association of ACE concentration change with risk of type 2 diabetes using a two-sample MR

Forest plots depict a summary of the MR results for ACE. A single SNP MR was conducted for each independent SNP (pairwise $r^2 < 0.1$) using the same method as described for the multi-SNP MR. ORs were determined by the Wald method by regressing the effect estimates from the type 2 diabetes association (from DIAGRAM) on the ACE association (from ORIGIN). A two-tailed p-value was calculated using a Z-test from 100,000 random simulations.

Supplementary Figure 3. Forest plot of the association of ACE inhibitors and new-onset type 2 diabetes (T2D) risk

Odds ratio was estimated using inverse variance weighted random effects model (RE model). Heterogeneity was assessed using restricted maximum likelihood estimation (REML).

Randomized clinical trial	ACE inhibitors		Placebo				
	T2D+	T2D-	T2D+	T2D-	OR of T2D [95% CI]		
DREAM	449	2174	489	2157	-	0.91 [0.79, 1.05]	
EUROPA	389	5000	397	4930	÷	0.97 [0.84, 1.12]	
HOPE	102	2735	155	2728		0.66 [0.51, 0.85]	
PEACE	335	3097	399	3073	-	0.83 [0.71, 0.97]	
SOLVD	9	144	31	107		0.22 [0.10, 0.47]	
IMAGINE	28	1131	35	1106		0.78 [0.47, 1.29]	
RE Model					-	0.76 [0.60, 0.97]	
					0.05 0.25 1 2		
					Odds Ratio (log scale)		

 tau^2 (estimated amount of total heterogeneity) : 0.0653 (se= 0.0554)

 I^2 (total heterogeneity / total variability) : 85.61%

H²(total variability / sampling variability) : 6.95

Test for heterogeneity: Q= 19.6789, p-value= 0.0014

1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007 Sep;81(3):559–75.

2. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011 Jan 7;88(1):76–82.

3. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009 Jun;5(6):e1000529.

4. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015 Oct 1;526(7571):68–74.

5. O'Connell J, Sharp K, Shrine N, Wain L, Hall I, Tobin M, et al. Haplotype estimation for biobank-scale data sets. Nat Genet. 2016 Jul;48(7):817–20.

6. Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, et al. Improved imputation of lowfrequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 2015 Sep;6:8111– 8111.

7. Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Stat Med. 2007 Jan 15;26(1):37–52.

8. DREAM Trial Investigators, Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006 Oct 12;355(15):1551–62.

9. Fox KM, EURopean trial On reduction of cardiac events with Perindopril in stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet Lond Engl. 2003 Sep 6;362(9386):782–8.

10. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolffenbuttel BH, et al. Ramipril and the development of diabetes. JAMA. 2001 Oct 17;286(15):1882–5.

11. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, et al. Angiotensinconverting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004 Nov 11;351(20):2058–68.

12. Vermes E, Ducharme A, Bourassa MG, Lessard M, White M, Tardif J-C, et al. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies Of Left Ventricular Dysfunction (SOLVD). Circulation. 2003 Mar 11;107(9):1291–6.

13. Chocron S, Baillot R, Rouleau JL, Warnica WJ, Block P, Johnstone D, et al. Impact of previous percutaneous transluminal coronary angioplasty and/or stenting revascularization on outcomes after surgical revascularization: insights from the imagine study. Eur Heart J. 2008 Mar;29(5):673–9.

14. Scott RA, Scott LJ, Mägi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes. 2017 Nov 1;66(11):2888–902.

15. Gerstein HC, Paré G, McQueen MJ, Haenel H, Lee SF, Pogue J, et al. Identifying Novel Biomarkers for Cardiovascular Events or Death in People With Dysglycemia. Circulation. 2015 Dec 15;132(24):2297–304.

16. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015 Feb 12;518(7538):197–206.

17. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010 Feb;42(2):105–16.

18. Prokopenko I, Poon W, Mägi R, Prasad B R, Salehi SA, Almgren P, et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 2014 Apr;10(4):e1004235.

19. Saxena R, Hivert M-F, Langenberg C, Tanaka T, Pankow JS, Vollenweider P, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010 Feb;42(2):142–8.

20. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin $A_1(C)$ levels via glycemic and nonglycemic pathways. Diabetes. 2010 Dec;59(12):3229–39.