Supplementary Table 1. Characteristics of genetic variants associated with T2DM in the UK biobank

Chromosome	Nearest Gene	Rs number	Effective allele	Non-effective	Odds ratios	95 %, CI for
				allele		Odds ratios
14	NRXN3	rs10146997	G	A	1.07	1.04-1.10
2	BCL11A	rs10193447	T	С	1.07	1.05-1.10
7	PAX4	rs10229583	G	A	1.04	1.01-1.07
7	DGKB	rs10238625	A	G	1.07	1.04-1.09
7	DGKB	rs10276674	C	T	1.09	1.06-1.12
11	HSD17B12	rs1061810	A	C	1.08	1.05-1.11
9	CDKN2A/B	rs10757282	C	T	1.04	1.01-1.06
9	GLIS3	rs10758593	A	G	1.05	1.02-1.07
11	MTNR1B	rs10830963	G	С	1.08	1.05-1.11
10	GRK5	rs10886471	С	T	1.02	0.99-1.04
7	KLF14	rs10954284	T	A	1.06	1.03-1.08
9	CDKN2A/B	rs10965223	A	G	1.08	1.05-1.11
9	CDKN2A/B	rs10965248	T	С	1.15	1.11-1.18
10	VPS26A	rs10998572	С	A	1.09	1.04-1.15
12	CCND2	rs11063018	С	T	1.09	1.06-1.13
2	CCDC85A	rs1116357	G	A	1.01	0.99-1.04
10	HHEX/IDE	rs11187140	G	A	1.14	1.11-1.17
13	SPRY2	rs11616380	G	T	1.09	1.07-1.12
3	ADCY5	rs11708067	A	G	1.12	1.08-1.15
3	PPARG	rs11712037	С	G	1.14	1.10-1.18
6	CENPW	rs11759026	G	A	1.1	1.06-1.13
8	TP53INP1	rs11786613	С	A	1.21	1.12-1.31
7	MNX1	rs1182436	С	T	1.08	1.05-1.12
1	FAF1	rs12031920	T	A	1.05	1.03-1.08
18	BCL2A	rs12454712	T	С	1.05	1.02-1.08
15	PRC1	rs12595616	С	T	1.07	1.04-1.09
20	HNF4A	rs12625671	С	T	1.09	1.05-1.13
9	TLE4	rs13301067	G	A	1.11	1.06-1.16
4	MAEA	rs1531583	T	G	1.15	1.08-1.22
16	FTO	rs1558902	A	T	1.13	1.11-1.16
2	RBMS1	rs1563575	A	G	1.07	1.04-1.10
9	DMRTA1	rs1575972	T	A	1.13	1.05-1.21
7	JAZF1	rs1635852	T	С	1.1	1.07-1.12
5	ANKRD55	rs173964	G	A	1.06	1.03-1.09

20	HNF4A	rs1800961	T	С	1.17	1.09-1.25
2	DNER	rs1861612	A	G	1.02	1.00-1.05
18	MC4R	rs1942880	T	С	1.07	1.04-1.10
	MTMR3/HORMAD					
22	2	rs2023681	G	A	1.13	1.09-1.18
6	HLA-B	rs2244020	G	A	1.02	1.00-1.05
12	HMGA2	rs2258238	T	A	1.11	1.07-1.16
10	PLEKHA1	rs2292626	C	T	1.09	1.06-1.11
11	KCNQ1	rs231360	T	С	1.08	1.05-1.11
11	KCNQ1	rs233449	G	A	1.09	1.06-1.12
11	DUSP8	rs2334499	T	С	1.05	1.03-1.08
12	MPHOSPH9	rs2851437	A	С	1.07	1.04-1.10
2	GRB14	rs28584669	T	С	1.05	1.02-1.09
16	CMIP	rs2925979	T	С	1.08	1.05-1.10
1	PROX1	rs340874	С	Т	1.07	1.04-1.10
3	UBE2E2	rs35352848	T	С	1.09	1.06-1.12
1	MACF1	rs3768321	T	G	1.08	1.05-1.11
8	SLC30A8	rs3802177	G	A	1.12	1.09-1.15
4	WFS1	rs3821943	T	С	1.1	1.08-1.13
1	NOTCH2	rs406767	С	T	1.14	1.08-1.20
12	CCND2	rs4238013	С	T	1.1	1.07-1.14
19	APOE	rs429358	T	С	1.13	1.09-1.17
3	IGF2BP2	rs4402960	T	G	1.15	1.12-1.18
11	KCNQ1	rs441613	С	T	1.06	1.03-1.08
8	TP53INP1	rs4734285	T	С	1.06	1.03-1.08
15	C2CD4A	rs4774420	С	T	1.08	1.05-1.11
8	ANK1	rs516946	С	T	1.08	1.04-1.11
11	KCNJ11	rs5219	T	С	1.07	1.04-1.10
19	GIPR	rs55864746	A	G	1.07	1.04-1.10
12	HNF1A (TCF1)	rs56348580	G	С	1.08	1.05-1.10
19	CILP2	rs58489806	T	С	1.09	1.04-1.13
4	ACSL1	rs60780116	T	С	1.09	1.06-1.13
15	ZFAND6	rs62006309	A	G	1.05	1.03-1.08
9	ABO	rs635634	T	С	1.08	1.05-1.12
5	ZBED3	rs6453287	С	A	1.07	1.04-1.09
12	TSPAN8/LGR5	rs6581998	С	T	1.06	1.03-1.09

1	ATP8B2	rs67156297	A	G	1.03	1.00-1.06
2	<i>TMEM163</i>	rs6723108	T	G	1.02	1.00-1.05
2	THADA	rs6757251	С	T	1.14	1.10-1.19
3	LPP	rs6777684	G	A	1.05	1.03-1.08
15	INAFM2	rs67839313	С	T	1.03	0.99-1.07
6	SLC35D3	rs6918311	A	G	1.07	1.04-1.10
6	SSR1/RREB1	rs6923241	С	T	1.07	1.04-1.10
11	MIR4686	rs7107784	G	A	1.02	0.99-1.05
17	ZZEF1	rs7224685	T	G	1.07	1.04-1.10
18	LAMA1	rs7234111	С	T	1.06	1.04-1.09
13	TBC1D4	rs7330796	С	T	1.02	0.98-1.06
15	RASGRP1	rs7403531	T	С	1.04	1.01-1.07
3	ADAMTS9	rs7428936	T	С	1.07	1.05-1.10
6	CDKAL1	rs7451008	С	T	1.19	1.16-1.22
5	PAM	rs74944275	T	С	1.16	1.09-1.24
11	KCNQ1	rs756852	G	A	1.09	1.06-1.13
17	HNF1B (TCF2)	rs757209	G	A	1.09	1.06-1.12
11	ARAP1 (CENTD2)	rs76550717	A	G	1.1	1.07-1.14
4	TMEM154	rs7660590	C	T	1.06	1.03-1.08
17	GLP2R	rs78761021	G	A	1.07	1.05-1.10
10	TCF7L2	rs7903146	T	C	1.34	1.31-1.38
7	MIR129-LEP	rs791595	G	A	1.01	0.98-1.04
12	KLHDC5	rs7953190	T	С	1.08	1.05-1.11
16	BCAR1	rs8056814	G	A	1.16	1.11-1.22
10	ZMIZ1	rs810517	C	T	1.09	1.07-1.12
7	GCK	rs878521	A	G	1.05	1.02-1.08
6	HLA-DQA1	rs9271774	C	A	1.1	1.06-1.14
2	ASB3	rs9309245	G	С	1.01	0.98-1.04
9	TLE1	rs9410573	T	С	1.08	1.05-1.10
15	HMG20A	rs952471	G	С	1.08	1.06-1.11
5	ANKRD55	rs9687833	A	G	1.1	1.07-1.13
3	ST6GAL1	rs9820223	С	T	1.06	1.03-1.09
17	SRR	rs9911305	A	G	1.05	1.02-1.07

Beta value =Ln (OR)

Supplementary Table 2. Definitions of prevalent diabetes and incident T2D.

	Source and definition	UK Biobank field code
Diabetes at baseline [Both	Self-reported at baseline ¹ ;	20002, 20003, 2976, 6153, 6177
"possible" diabetes (T1D, T2D	Medication for diabetes at	
and other types of diabetes) and	baseline ¹ ;	41271, 41281, 41270, 41280, 53,
"probable" diabetes (T1D, T2D	ICD9: 250, 6480 (if incident	191,40000
and other types of diabetes) were	time of diabetes<=Date of	
excluded at baseline.]	attending assessment centre);	
	ICD10: E10, E11, E12, E13,	
	E14, O24 (if incident time of	
	diabetes<= Date of attending	
	assessment centre).	
Incident T2D	ICD 10: E11	41270,41280

^{1.} Eastwood SV, Mathur R, Atkinson M, et al. Algorithms for the capture and adjudication of prevalent and incident diabetes in UK Biobank. PLoS One. 2016. 11(9): e0162388.

Supplementary Table 3. Hazard ratios (HRs) for T2DM across quartiles (Q) categories of T2DM-GRS

Quartiles (Q) categories of T2DM-GRS					
	Q1	Q2	Q3	Q4	P-trend
T2DM, Case, n (%)	942 (1.0)	1318 (1.5)	1627 (1.8)	2113 (2.3)	
Model 1	1 (reference)	1.41 (1.29-1.53)	1.74 (1.61-1.89)	2.29 (2.13-2.48)	< 0.001
Model 2	1 (reference)	1.38 (1.27-1.50)	1.72 (1.59-1.87)	2.27 (2.11-2.46)	< 0.001

Model 1: Results were adjusted for age, sex, the first 10 genetic principal components and genotyping array.

Model 2: Results were adjusted for age, sex, centers, BMI, physical activity, smoking, moderate drinking, healthy diet, Townsend deprivation index, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, arthritis, hypertension, high cholesterol, vitamin supplement use, mineral supplement use, the first 10 genetic principal components and genotyping array.

Supplementary Table 4. The Hazard ratios of glucosamine use for T2DM after excluding participants with glucose level ≥ 7.0 (mmol/L).

	Non-glucosamine user	Glucosamine user	<i>P</i> -value
Case, n (%)	5368 (1.7)	1188 (1.5)	
Age and sex-adjusted HR (95% CI)	1 (reference)	0.83 (0.78-0.88)	< 0.001
Model 1	1 (reference)	0.82 (0.76-0.87)	< 0.001
Model 2	1 (reference)	0.84 (0.79-0.90)	< 0.001

Model 1: Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, osteoarthritis or joint, hypertension, high cholesterol and fasting time.

Model 2: further adjustment for vitamin supplement use and mineral supplement use on the basis of model 1.

Supplementary Table 5. The Hazard ratios of glucosamine use for T2DM after excluding participants with HbA1c levels \geq 48 (mmol/mol).

	Non-glucosamine user	Glucosamine user	<i>P</i> -value	
Case, n (%)	4309 (1.6)	953 (1.4)		
Age and sex-adjusted HR (95% CI)	1 (reference)	0.83 (0.77-0.88)	< 0.001	
Model 1	1 (reference)	0.82 (0.76-0.87)	< 0.001	
Model 2	1 (reference)	0.84 (0.79-0.91)	< 0.001	

Model 1: Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, osteoarthritis or joint, hypertension and high cholesterol.

Model 2: further adjustment for vitamin supplement use and mineral supplement use on the basis of model 1.

Supplementary Table 6. The Hazard ratios of glucosamine use for T2DM after excluding participants with limited follow-up years (≦2 years).

	Non-glucosamine user	Glucosamine user	<i>P</i> -value	
Case, n (%) Age and sex-adjusted HR (95% CI)	4498 (1.5) 1 (reference)	1012 (1.4) 0.84 (0.79-0.90)	<0.001	
Model 1 Model 2	1 (reference) 1 (reference)	0.82 (0.76-0.88) 0.84 (0.78-0.90)	<0.001 <0.001	

Model 1: Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, osteoarthritis or joint, hypertension and high cholesterol.

Model 2: further adjustment for vitamin supplement use and mineral supplement use on the basis of model 1.

Supplementary Table 7. The Hazard ratios of glucosamine use for T2DM after excluding participants who regular take anti-inflammatory drugs (aspirin use or Non-aspirin NSAIDs use)

	Non-glucosamine user	Glucosamine user	<i>P</i> -value	
Case, n (%) Age and sex-adjusted HR (95% CI)	4198 (1.7) 1 (reference)	853 (1.5) 0.81 (0.76-0.88)	<0.001	
Model 1 Model 2	1 (reference) 1 (reference)	0.80 (0.74-0.86) 0.82 (0.76-0.89)	<0.001 <0.001	

Model 1: Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, family history of diabetes, osteoarthritis or joint, hypertension and high cholesterol.

Model 2: further adjustment for vitamin supplement use and mineral supplement use on the basis of model 1.

Supplementary Table 8. The Hazard ratios of glucosamine use for T2DM after further adjusted for glucose levels or HbA1c levels or CRP levels.

	Non-glucosamine user	Glucosamine user	<i>P</i> -value
Case, n (%)	5138 (1.8)	1120 (1.7)	
Model 1+glucose+fasting time	1 (reference)	0.86 (0.80-0.92)	
Case, n (%)	5539 (1.8)	1213 (1.6)	
Model 1+HbA1c	1 (reference)	0.86 (0.80-0.92)	< 0.001
Case, n (%)	5543 (1.8)	1225 (1.7)	
Model 1+CRP	1 (reference)	0.86 (0.80-0.92)	< 0.001

Model 1: Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, osteoarthritis or joint, hypertension, high cholesterol, vitamin supplement use and mineral supplement use.

Supplementary Table 9. The Hazard ratios of habitual glucosamine use for T2DM in the UK biobank. [Analysis were conducted in participants who provide information in "Vitamin/mineral supplements yesterday" questionnaire at least once during the follow-up period.]

	Non-glucosamine user	Non-habitual glucosamine user ^{a,b}	Habitual glucosamine user a,c	<i>P</i> -trend
Case, n (%) Model 1	1414 (1.3) 1 (reference)	232 (1.3) 0.96 (0.83-1.12)	224 (1.1) 0.75 (0.64-0.88)	<0.001
Model 2	1 (reference)	0.85 (0.73-0.99)	0.75 (0.63-0.88)	< 0.001

Model 1: Results were adjusted for age and sex

Model 2: Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, arthritis, hypertension, high cholesterol, vitamin supplement use and mineral supplement use.

^a "Vitamin/mineral supplements yesterday" questionnaire only provide the "glucosamine/chondroitin" as an optional item (At baseline, questionnaire only provide the "glucosamine" as an optional item). However, because glucosamine and chondroitin supplements are usually taken together in one pill, chondroitin is rarely taken alone by individuals (In the Nurses' Health Study and Health Professionals follow-up study, nearly all (97–98%) chondroitin users also reported use of glucosamine), we assumed that questions on the glucosamine use were equivalent in the sensitivity analyses.

^b Participants who indicated they took glucosamine only once at baseline or during the follow-up (1 baseline survey + 4 times of "Vitamin/mineral supplements yesterday" surveys).

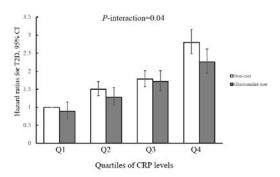
^c participants who indicated they took glucosamine at least two times at baseline or during the follow-up period.

Supplementary Figure 1A. The joint association of glucosamine use and CRP in relation to risk of T2D (after excluding participants with high glucose levels).

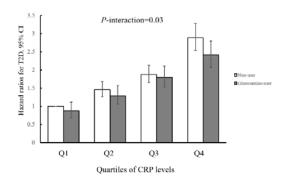
Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, moderate drinking, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, osteoarthritis or joint pain, hypertension, high cholesterol, vitamin supplement use, mineral supplement use and fasting time.

Supplementary Figure 1B. The joint association of glucosamine use and CRP in relation to risk of T2D (after excluding participants with high HbA1c levels).

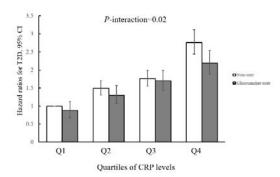
Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, moderate drinking, aspirin use, Non-aspirin NSAIDs use, family history of diabetes, osteoarthritis or joint pain, hypertension, high cholesterol, vitamin supplement use and mineral supplement use.


Supplementary Figure 1C. The joint association of glucosamine use and CRP in relation to risk of T2D (after excluding participants with limited follow-up years (≤ 2 years)).

Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, moderate drinking, family history of diabetes, osteoarthritis or joint pain, hypertension, high cholesterol, vitamin supplement use and mineral supplement use.


Supplementary Figure 1D. The joint association of glucosamine use and CRP in relation to risk of T2D (after excluding participants who regular took anti-inflammatory drug).

Results were adjusted for age, sex, race, centers, BMI, physical activity, smoking, healthy diet, Townsend deprivation index, moderate drinking, family history of diabetes, osteoarthritis or joint pain, hypertension, high cholesterol, vitamin supplement use and mineral supplement use.


Supplementary figure 1A

Supplementary figure 1C

Supplementary figure 1B

Supplementary figure 1D

Supplementary materials

Details of covariates

Height was measured by a Seca 202 height measure. Weight was measured to the nearest 0.1 kg by the Tanita BC-418 MA body composition analyzer. Body mass index (BMI) (calculated as weight (kg) divided by height in meters squared (m²)). Blood pressure was measured by automatic Omron HEM-7015IT digital blood pressure monitor using an appropriate size cuff, and a sphygmomanometer was used if the automatic device could not be used.

The baseline touch-screen questionnaire was used to assesses other potential confounders, including smoking status (never, past and current), alcohol intake [ethanol intake (g/week) was calculated by the quantity of each type of drink (red wine, white wine, beer/cider, fortified wine, and spirits) multiplied by its standard drink size and reference alcohol content (Alcohol intake (g/week) was calculated by the quantity of each type of drink (red wine, white wine, beer/cider, fortified wine, and spirits) multiplied by its standard drink size and reference alcohol content (1 unit-equivalent described as containing 8g of pure alcohol; 125ml wine=1.6 units-equivalents, 1 pint beer =2.6 units-equivalents, 25ml spirits=1 unit-equivalent, 62.5ml fortified wine=1 unit-equivalent, https://www.drinkaware.co.uk/alcohol-facts/alcoholic-drinks-units/whatis-an-alcohol-unit/)], healthy diet [healthy diet score was evaluated by red meat intake (< median), vegetable intake (\geq median), fruit intake (\geq median); One point was given for each favorable diet factor and the total diet score ranges from 0 to 4; a healthy diet was defined as a diet score \geq 2], physical activity (metabolic equivalents minutes per week were calculated according to the International Physical Activity Questionnaire short form: 1 minute walking = 3.3 METS, 1minute moderate physical activity = 4 METS and 1 minute vigorous physical activity = 8 METS).

Townsend deprivation index reflect socioeconomic status, which is a composite measure of deprivation based on unemployment, non-car ownership, non-home ownership and household overcrowding, a higher Townsend index score implies a greater degree of deprivation.

At baseline, the cardiovascular disease was defined by self-reported coronary heart disease and stroke (Field ID 20002 and Field ID 6150); the cancer was defined by any type of self-reported cancer (Field ID 20001 and Field ID 2453). Hypertension was defined as a self-reported history of hypertension or a systolic blood pressure ≥ 140 mmHg or a diastolic blood pressure ≥ 90 mm Hg or taking antihypertensive medications; High cholesterol was defined as a self-reported history of high cholesterol or taking medications; Osteoarthritis or joint pain was defined as if any type of osteoarthritis or joint pain occurred at any time during the follow-up period (a self-reported history of arthritis or the ICD-10 codes (M15-M19, M255) or the ICD-9 codes (715 and 7194)). Vitamin supplements use was defined as participants who use multivitamin, folic acid, vitamin A, vitamin B, vitamin C, vitamin D or vitamin E· Non-vitamin supplements use was defined as participants who use calcium, iron, zinc, selenium or fish oil.