Supplementary Appendix. Model Used For Optimal Model Predicted Bolus (MPB)

Model optimization was based on the 3^{rd} order insulin pharmacokinetic/pharmacodynamic model developed by Sherwin and colleagues (1) combined with the 1^{st} order Bergman minimal model (2; 3), and a piecewise linear approximation of the 2^{nd} order meal absorption model proposed by Hovorka and colleagues (4). The combined model allowed 9 parameters to be identified: 3 insulin PK/PD rate constants, the effect of glucose per se to increase glucose uptake and decrease endogenous glucose production (p_1), insulin sensitivity normalized to insulin clearance (S_I), 3 parameters characterizing the initial rise, maximum rate, and fall in glucose appearance following the meal (T_{rise} , $T_{constant}$, and $T_{decrease}$), and the glucose distribution space (V_G). Model equations:

$$\begin{split} \frac{dI_{SC}}{dt} &= \frac{1}{\tau_1} \Delta ID - \frac{1}{\tau_1} I_{SC} \\ \frac{dI_p}{dt} &= \frac{1}{\tau_2} I_{SC} - \frac{1}{\tau_2} I_p \\ \frac{dI_{ISF}}{dt} &= \frac{1}{\tau_3} I_p - \frac{1}{\tau_3} I_{ISF} \\ \frac{dG}{dt} &= - \big[p_1 + S_I \Delta I_{ISF} \big] G + p_1 G_B + \frac{R_{A[MEAL]}}{V_G} \\ R_{A[MEAL]} &= if \ T_{MEAL} \leq t < T_{rise} \ SLOPE_1 \big[t - T_{MEAL} \big] \\ if \ T_{rise} \leq t < T_{constant} \ R_{A[MAX]} \\ if \ T_{constant} \leq t \leq T_{decrease} \ SLOPE_2 \big[t - T_{constant} \big] \end{split}$$

were implemented in Microsoft Excel (Office 2013), with the added constraint that the total area under curve for $R_{A[MEAL]}$ equal the grams of carbohydrate in the meal, and that $SLOPE_1 = R_{A[MAX]}/[T_{rise} - T_{meal}]$ and $SLOPE_2 = R_{A[MAX]}/[T_{constant} - T_{decrease}]$. Parameters for each HFHP meal were obtained using a nonlinear generalized reduced gradient algorithm available in Microsoft Excel. We have previously used a similar model to characterize the effect of meal fat content on insulin requirements (5) and characterize intraday changes in metabolism (6; 7).

Supplementary Appendix References

- 1. Sherwin RS, Kramer KJ, Tobin JD, Insel PA, Liljenquist JE, Berman M, Andres R: A model of the kinetics of insulin in man. J Clin Invest 1974;53:1481-1492
- 2. Bergman RN, Finegood DT, Ader M: Assessment of insulin sensitivity in vivo. Endocr Rev 1985;6:45-86
- 3. Caumo A, Bergman RN, Cobelli C: Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index. J Clin Endocrinol Metab 2000;85:4396-4402
- 4. Wilinska ME, Chassin LJ, Acerini CL, Allen JM, Dunger DB, Hovorka R: Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. J Diabetes Sci Technol 2010;4:132-144
- 5. Laxminarayan S, Reifman J, Edwards SS, Wolpert H, Steil GM: Bolus Estimation-Rethinking the Effect of Meal Fat Content. Diabetes Technol Ther 2015;17:860-866
- 6. Kanderian SS, Weinzimer S, Voskanyan G, Steil GM: Identification of intraday metabolic profiles during closed-loop glucose control in individuals with type 1 diabetes. J Diabetes Sci Technol 2009;3:1047-1057
- 7. Kanderian SS, Weinzimer SA, Steil GM: The identifiable virtual patient model: comparison of simulation and clinical closed-loop study results. J Diabetes Sci Technol 2012;6:371-379

Supplementary Table 1. Nutritional composition of test foods

Meal	Ingredient	Weight (g)	Energy (kCal)	CHO (g)	Glycemic Index (%)	Fat (g)	Protein (g)
Low Fat, Low Protein (LFLP)	Pizza Base	93	249	46	52	3	8
	Marinara Sauce	42	24	4	-	1	1
	TOTAL	135	273	50		4	9
High Fat, High Protein (HFHP)	Pizza Base	93	249	46	52	3	8
	Marinara Sauce	42	24	4	-	1	1
	Cheese	125	491	0	-	40	27
	TOTAL	260	764	50		44	36
Difference			+ 491	-		+ 40	+ 27

Supplementary Table 2. Mealtime insulin dosing and 6 hour postprandial glucose profiles in 10 adults with type 1 diabetes.

	LFLP	HFHP	HFHP – Optimized Dose
Mean Insulin Dose (units)	4.7	4.7	7.9
Mean Insulin Combination Wave Split (%/%)	50/50	50/50	30/70
Mean Insulin Combination Wave Duration (minutes)	120	120	144
Glucose iAUC (mg/dL.min)	13320 ± 2960	27092 ± 1709	11712 ± 3172
Mean Incremental plasma glucose (mg/dL)	+23 ± 11	+73 ± 4	+24 ± 11
Mean Incremental Peak plasma glucose (mg/dL)	+82 ± 13	+118 ± 7	+61 ± 13
Time to Mean Incremental Peak plasma glucose (minutes)	105 ± 14	255 ± 21	207 ± 33

LFLP = Low fat, low protein meal; HFHP = High fat, high protein meal; iAUC = incremental Area Under the Curve