Affinity 1 Study Group

US

M. Adams, Murray, UT	R. Fink, La Mesa, CA	S. Lerman, Hollywood, FL	M. Rendell, Omaha, NE
A. Ahmann, Portland, OR	S. Garg, Aurora, CO	L. Loman, New Port Richey, FL	P. Rosenblit, Huntington Beach, CA
T. Bailey, Escondido, CA	J. Greenwald, New York, NY	D. Lorber, Flushing, NY	Julio Rosenstock, Dallas, TX
A. Bhargava, Des Moines, IA	I. Hartman, Arlington, TX	K. Lucas, Morehead City, NC	J. Selam, Tustin, CA
B. W. Bode, Atlanta, GA	L. Hazan, Los Angeles, CA	B. Lumicao, Chicago, IL	C. Sorli, Billings, MT
J. Bridges, Vicennes, IN	T. Helmer, Edina, MN	F. Marquez, Hialeah, FL	L. Stone, Wenatchee, WA
M. Brown, Atlanta, GA	K. Hershon, New Hyde Park, NY	R. Mayfield, Greer, SC	L. Stonesifer, Federal Way, WA
C. Case, Jefferson City, MO	P. Hollander, Dallas, TX	J. McGill, St. Louis, MO	M. Suarez, Miami, FL
K. Castorino, Santa Barbara, CA	P. Kapsner, Albuquerque, NM	A. Miller, Dunwoody, GA	A. Sussman, Renton, WA
W. Cefalu, Baton Rouge, LA	W. Kaye, West Palm Beach, FL	S. Miller, San Antonio, TX	R. Tanenberg, Greenville, NC
R Cherlin, Los Gatos, CA	D. Klonoff, San Mateo, CA	A. Odugbesan, Lawrenceville, GA	G. Uwaifo, New Orleans, LA
D. Cheung, Long Beach, CA	W. Lane, Asheville, NC	R. Patel, Houston, TX	T. Wahl, Omaha, NE
P. Clarke, Los Angeles, CA	P. LaStella, Paramus, NJ	S. Plevin, Palm Harbor, FL	M. Warren, Greenville, NC
G. Dailey III, LaJolla, CA	K. Latif, Bartlett, TN	A. Radparvar, St. Peters, MO	P. Weissman, Miami, FL
D. Denham, San Antonio, TX	M. Lawrence, Moorehead City, NC	J. Reed, III, Roswell, GA	W. Zigrang, Burlingame, CA

Ex-US

Russia		Ukraine	Brazil
Prof. A. Ametov, Moscow	Prof. A. Obrezan, St. Petersburg	Prof. Y. Karachentsev, Kharkiv	Dr. Denise Reis Franco, São Paulo
Prof. A. Gordienko, St. Petersburg	Dr. M. Pavlova, Moscow	Prof. V. Korpachev, Kiev	Dr. Jorge Luiz Gross, Porto Alegre
Prof. A. Gorelov, St. Petersburg	Prof. V. Podzolkov, Moscow	Prof. O. Larin, Kiev	
Dr. S. Grigoriev, Moscow	Prof. G. Reshedko, Smolensk	Prof. B. Mankovskyy, Kiev	
Dr. M. Kotelnikov, Moscow	Dr. O. Semenova, St. Petersburg	Prof. T. Pertseva, Dnipropetrovsk	
Dr. T. Kulagina, Petrozavodsk	Prof. S. Shustov, St. Petersburg	Prof. G. Popik / Dr. S. Kovalenko, Odessa	
Prof. L. Kvitkova, Kemerovo	Dr. E. Smolyarchuk, Moscow	Dr. Y. Suprun, Donetsk	
Prof. V. Marasaev, Yaroslavl	Dr. E. Turova, Moscow	Dr. Z. Teliatnikova, Odessa	
Dr. A. Mayorov, Moscow	Prof. N. Vorokhobina, St. Petersburg	Prof. M.Vlasenko, Vinnytsya	
Dr. T. Meleshkevich, Moscow	Prof. V. Yakusevich, Yaroslavl	Prof. Y. Karachentsev, Kharkiv	
Dr. E. Metkina, St. Petersburg	Dr. A. Zalevskaya, St. Petersburg		
Prof. A. Ametov, Moscow	Prof. A. Obrezan, St. Petersburg		

Supplementary Table S1. TI-Gen2 dose conversion

RAA (prandial) bolus dose	Starting TI-Gen2 dose
Up to 4 U	10 U
> 4–8 U	20 U
> 8–12 U	30 U
> 12–16 U	40 U
> 16–20 U	50 U
> 20–24 U	60 U

RAA: rapid-acting insulin analog, TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler.

Supplementary Table S2. Prandial dose* titrations for insulin aspart group adjusted weekly based on median of the 3 most recent measurements for each meal

Median pre-next meal BG level [†]	Insulin aspart dose adjustment [‡]		
<100 mg/dL	Decrease dose by 10% of current dose		
\geq 100 to <120 mg/dL	Maintain current dose		
≥120 to <140 mg/dL	Increase by 1 U		
≥140 to <180 mg/dL	Increase dose by 2 U		
>180 mg/dL	Increase dose by 3 U (or 10% of dose)		

BG: blood glucose

^{*}The total daily prandial insulin was to be approximately 40% to 60% of total daily insulin dose.

[†]Patients measured pre-next meal and bedtime BG levels at least 3 times for a given meal within each week.

[‡]Adjustment of prandial doses of insulin aspart was based on subsequent pre-meal BG values (breakfast, lunch and dinner doses were based on prelunch, predinner and bedtime BG, respectively). Additional dose adjustments/modifications (e.g., based on carbohydrate counting, meal size, self-monitored blood glucose [SMBG] results, snacks, postprandial glucose [PPG] level) were allowed.

Supplementary Table S3. Prandial dose* titrations for TI-Gen2 group adjusted weekly based on median of the 3 most recent measurements for each meal

Median 90-minute PPG level [†]	TI-Gen2 Inhalation Powder dose adjustment [‡]
<110 mg/dL	Decrease dose by 10 U
≥110 to <160 mg/dL	Maintain current dose
≥160 mg/dL	Increase dose by 10 U

PPG: postprandial glucose, TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler

*The total daily prandial insulin was to be approximately 40% to 60% of total daily insulin dose (based on equivalent units: 4 U of prandial insulin is approximately equivalent to 10 U of TI Inhalation Powder using the Gen2 inhaler or 15 U of TI Inhalation Powder using the MedTone inhaler).

[†]Patients who had a 90-minute PPG level \geq 180 mg/dL were to take a supplemental after-meal dose of 10 U with the Gen2 inhaler at the time of the PPG reading (i.e., same day and time). Patients who developed more than 2 episodes of hypoglycemia after taking supplemental doses of TI Inhalation Powder were instructed not to take additional supplemental doses of TI Inhalation Powder and to consult with the Principle Investigator.

[‡]The instructions were the same for the MedTone inhaler except that the dose adjustments were in increments of 15 U; 10 U from the Gen2 inhaler provides the same insulin dose as 15 U from the MedTone inhaler.

Supplementary Table S4. Patient demographics and baseline disease characteristics (safety population)

	Number (%) of patients			
	TI-Gen2 TI-MedTone Insulin aspa			
	(n = 174)	(n = 173)	(n = 171)	
Age (years)				
Mean	37.0	40.0	39.0	
SD	12.42	13.32	12.67	
Median	36.0	39.0	36.0	
Range	[18, 71]	[18, 76]	[18, 76]	
Age group (years)				
18–30	56 (32.2)	47 (27.2)	47 (27.5)	
31–49	93 (53.4)	84 (48.6)	88 (51.5)	
50–64	18 (10.3)	33 (19.1)	28 (16.4)	
65+	7 (4.0)	9 (5.2)	8 (4.7)	
Sex	, ,	, ,	, ,	
Male	77 (44.3)	80 (46.2)	74 (43.3)	
Female	97 (55.7)	93 (53.8)	97 (56.7)	
Race	, ,	, ,	, , ,	
White	164 (94.3)	166 (96.0)	167 (97.7)	
Black or African American	8 (4.6)	5 (2.9)	3 (1.8)	
American Indian or Alaska Native	0	0	0	
Asian	1 (0.6)	1 (0.6)	0	
Native Hawaiian/Other Pacific Islander	1 (0.6)	0	0	
Other	0	1 (0.6)	1 (0.6)	
Country	<u> </u>			
United States	71 (40.8)	68 (39.3)	68 (39.8)	
Russia	45 (25.9)	52 (30.1)	52 (30.4)	
Ukraine	44 (25.3)	38 (22.0)	38 (22.2)	
Brazil	14 (8.0)	15 (8.7)	13 (7.6)	
Duration of diabetes mellitus (years)	<u> </u>			
Mean (SD)	16.0 (10.27)	17.7 (10.69)	16.7 (10.01)	
Median	13.8	15.2	16.0	
Range	[1.1, 57.3]	[1.1, 49.5]	[1.0, 42.2]	
Weight (kg)	<u> </u>			
Mean (SD)	75.7 (15.75)	76.8 (14.87)	72.6 (15.24)	
Median	74.4	76.3	69.7	
Range	[41.7, 129.4]	[47.6, 124.0]	[46.6, 120.2]	
BMI (kg/m ²)				
Mean (SD)	26.0 (4.48)	26.2 (3.74)	25.4 (4.10)	
Median	25.7	26.0	24.5	
Range	[16.6, 38.6]	[18.1, 36.4]	[17.4, 37.2]	
HbA _{1c} (%)*				
Mean (SD)	7.98 (0.767)	7.99 (0.732)	7.88 (0.751)	
Median	7.90	8.00	7.90	
Range	[6.20, 10.60]	[6.10, 10.20]	[5.80, 10.10]	

	Number (%) of patients			
	TI-Gen2	TI-MedTone	Insulin aspart	
	(n = 174)	(n = 173)	(n = 171)	
HbA _{1c} (mmol/mol)				
Mean	63.7	63.8	62.6	
Median	62.8	63.9	62.8	
Range	[44.3, 92.4]	[43.2, 88.0]	[39.9, 86.9]	
Fasting plasma glucose (mg/dL)				
Mean (SD)	155.0 (67.62)	143.9 (60.79)	151.6 (67.44)	
Median	144.5	137.0	149.0	
Range	[21.0, 403.0]	[43.0, 358.0]	[23.0, 375.0]	
Basal insulin (n [%])				
Insulin detemir	26 (14.9)	26 (14.9)	26 (15.3)	
Insulin glargine	121 (69.5)	122 (70.1)	121 (71.2)	
NPH insulin	27 (15.5)	26 (14.9)	23 (13.5)	
Basal insulin dosing frequency (n [%]) [†]				
Once	72 (42)	83 (48)	77 (45)	
More than once	99 (58)	90 (52)	93 (55)	

SD is standard deviation, TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler, TI-MedTone: Technosphere Insulin delivered via the MedTone inhaler

^{*}Baseline HbA_{1c} values were obtained at randomization, after run-in period

[†]Dosing frequency is based on each subject's predominant dosing frequency observed from their diary data.

Supplementary Table S5. Analysis of the primary endpoint (per-protocol population)

		TI-Gen2 ($n = 130$)	Insulin aspart $(n = 146)$	Treatment difference
HbA _{1c} , % [mmol/mol] (95% CI)*	Baseline	7.94 [63.3]	7.92 [63.1]	
	Adjusted mean change	-0.21 (-0.35 to -0.08)	-0.42 (-0.54 to -0.29)	0.20 (0.02 to 0.39)

TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler

Supplementary Table S6. Adverse events in $\geq 2\%$ of patients

		Number (%) of patients			
	TI-Gen2	TI-MedTone	Insulin aspart		
	(n = 174)	(n = 173)	(n = 171)		
Cough	55 (31.6)	39 (22.5)	4 (2.3)		
Upper respiratory tract infection	14 (8.0)	16 (9.2)	12 (7.0)		
Headache	7 (4.0)	5 (2.9)	4 (2.3)		
Dyspnea	7 (4.0)	0	0		
Bronchitis	6 (3.4)	1 (0.6)	4 (2.3)		
Nasopharyngitis	5 (2.9)	13 (7.5)	12 (7.0)		
Throat irritation	5 (2.9)	3 (1.7)	1 (0.6)		
Diarrhea	4 (2.3)	2 (1.2)	5 (2.9)		
Oropharyngeal pain	3 (1.7)	6 (3.5)	3 (1.8)		
Influenza	2 (1.1)	9 (5.2)	3 (1.8)		
Vomiting	2 (1.1)	3 (1.7)	5 (2.9)		
Urinary tract infection	1 (0.6)	6 (3.5)	3 (1.8)		
Nausea	1 (0.6)	5 (2.9)	6 (3.5)		
Hypoglycemic unconsciousness	1 (0.6)	4 (2.3)	2 (1.2)		
Blood creatine phosphokinase increased	0	2 (1.2)	4 (2.3)		

TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler, TI-MedTone: Technosphere Insulin delivered via the MedTone inhaler

^{*}Assessed using mixed-model repeated-measures analysis

Supplementary Table S7. Hypoglycemic event rates during the treatment period – results from models with and without terms for the effect of treatment on HbA_{1c} (safety population)

	TI-Gen2 $(n = 174)$	Insulin aspart $(n = 171)$	Percentage reduction in event rate	TI - Insulin aspart P-value
Adjusted event rate from the original model (per 100 patient	-months)			
Total hypoglycemia	1028	1503	31.6%	<0.000*
Severe hypoglycemia	8.84	14.03	37.0%	0.1022*
Adjusted event rate from the model with additional HbA _{1c} terms [†] (per 100 patient-months)				
Total hypoglycemia	1035	1414	26.8%	<0.000 [†]
Severe hypoglycemia	8.66	15.24	43.2%	0.0516^{\dagger}

TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler

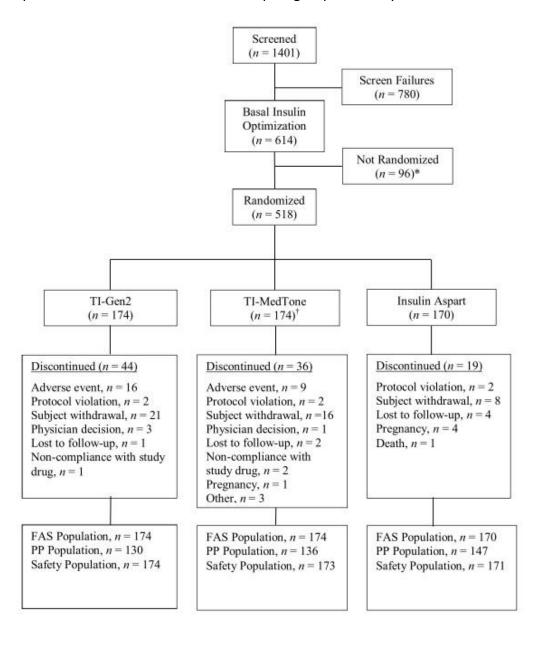
Supplementary Table S8. Analysis of the primary endpoint (full analysis set) adjusted by basal dose

		TI-Gen2 ($n = 171$)	Insulin aspart $(n = 169)$	Treatment difference
HbA _{1c} , % [mmol/mol] (95% CI)*	Baseline	7.92 [63.1]	7.91 [63.0]	
	Adjusted mean change	-0.21 (-0.33 to -0.09)	-0.40 (-0.52 to -0.28)	0.19 (0.02 to 0.36)

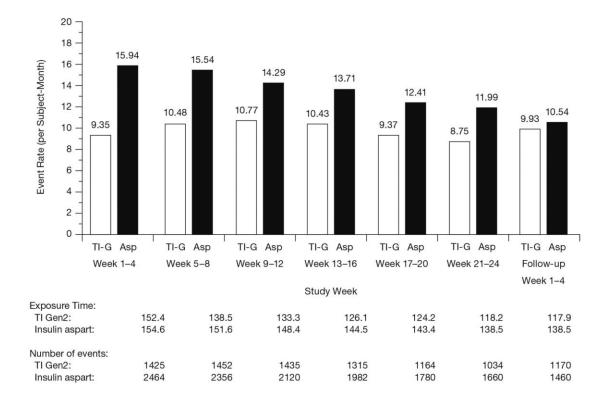
TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler

^{*}Adjusted event rates and *P*-values from a negative binomial regression analysis with terms for region, basal insulin stratum, and treatment in the model with duration of treatment exposure as an offset. The event rates given in this table are model-adjusted, whereas the event rates given in Table 1 are based on the total number of events divided by the total exposure time.

 $^{^{\}dagger}$ Adjusted event rates and P-values from a negative binomial regression analysis with terms for region, basal insulin stratum, treatment, HbA_{1c} change from baseline, and HbA_{1c} at end of treatment in the model with duration of treatment exposure as an offset.


^{*}Assessed using mixed-model repeated-measures analysis with additional terms for basal dose per kg of weight (U/kg)

Supplementary Figure S1. Patient disposition.


FAS: full analysis set, PP: per-protocol, TI-Gen2: Technosphere Insulin delivered via the Gen2 inhaler, TI-MedTone: Technosphere Insulin delivered via the MedTone inhaler.

*Of the 96 patients not randomized, 32 did not complete the basal optimization phase, 44 had prerandomization FPG values >180 mg/dL, and 20 were not randomized because, despite meeting the randomization criteria, the number of randomized patients exceeded the planned number.

[†]One patient randomized to the TI-MedTone group was dispensed insulin aspart from day 1 until end of study; the patient was included in the insulin aspart group for safety.

Supplementary Figure S2. Hypoglycemia event rates during trial (Safety population). Asp: insulin aspart, TI-Gen2 and also TI-G: Technosphere Insulin delivered via the Gen2 inhaler.

