Supplementary Table 1. Multiple logistic regression analyses of the cross-sectional association between baseline 25(OH)D status and diabetes prevalence.

25(OH)D* status	Diabetes prevalence ‡	Risk of prevalent diabetes, OR (95%CI)			
nmol/l	% (n/n _{total})	crude	Adjusted (1) ‡	Adjusted (2)	
<25	14.7 (125/849)	2.15 (1.59;2.91)	2.12 (1.53;2.93)	1.96 (1.35;2.86)	
≥ 25-50	11.4 (269/2358))	1.60 (1.23;2.09)	1.50 (1.13;2.00)	1.59 (1.14;2.21)	
≥ 50-75	9.2 (178/1931)	1.26 (0.95;1.67)	1.28 (0.95;1.72)	1.30 (0.92;1.83)	
≥ 75	7.4 (75/1008)	1.00 (reference)	1.00 (reference)	1.00 (reference)	
	P<0.001	P _{trend} <0.001	P _{trend} <0.001	P _{trend} <0.001	
Per 10 nmol/l increase		0.91 (0.88;0.94)	0.92 (0.88;0.95)	0.92 (0.88;0.96)	
		P<0.001	P<0.001	P<0.001	

^{*} Abbreviations: 25(OH)D, 25-hydroxy-vitamin-D; OR, odds ratio; CI, confidence interval.

Supplementary Table 2. Subgroup analyses of the association between baseline serum 25(OH)D and risk of prevalent and 5 year incident diabetes.

Potential confounders	Subgroups	Risk of incident diabetes *		
		OR (95% CI) per 10 nmol/l increase in 25(OH)D †,††		
Sex	Men	0.96 (0.87;1.05)		
	women	0.90 (0.80;1.01)	P _{interaction} =0.44	
Age	30-45	0.89 (0.78;1.00)		
	50-60	0.96 (0.87;1.05)	P _{interaction} =0.27	
Season	April-September	0.95 (0.88;1.04)		
	October-March	0.82 (0.70;0.96)	P _{interaction} =0.082	
BMI	<25 kg/m2	0.90 (0.77;1.06)		
	\geq 25 kg/m2	0.92 (0.85;1.01)	P _{interaction} =0.72	
Social class	Lower (1-3)	1.04 (0.91;1.18)		
	Higher (4-5)	0.90 (0.82;0.98)	P _{interaction} =0.080	
Family history of diabetes	No	0.96 (0.88;1.05)		
	Yes	0.86 (0.74;0.99)	P _{interaction} =0.18	
Dietary habits	Healthy	0.93 (0.85;1.01)		
-	less healthy	0.88 (0.72;1.08)	P _{interaction} =0.62	
Total energy intake	< median	0.91 (0.81;1.02)		
	≥ median	0.94 (0.85;1.04)	P _{interaction} =0.66	
Physical activity	Sedentary	0.98 (0.82;1.17)		
	Non-sedentary	0.93 (0.86;1.02)	P _{interaction} =0.63	
Smoking status	Non-smoker	0.96 (0.88;1.05)		
-	Smoker	0.89 (0.77;1.02)	P _{interaction} =0.33	
Alcohol consumption	≤ 14 drinks/week	0.93 (0.85;1.02)		
-	>14 drinks/week	0.91 (0.79;1.06)	P _{interaction} =0.77	
Randomisation group	Low intensity intervention	0.86 (0.70;1.06)		
	High intensity intervention	0.95 (0.87;1.03)	P _{interaction} =0.39	

^{*} incident diabetes was defined as having diabetes according to OGTT criteria, HbA1c criteria, a known history of diabetes, and/or use of diabetes medication among those without diabetes at baseline.

[†] Prevalent diabetes at baseline was defined as having diabetes according to OGTT criteria (fasting plasma glucose \geq 7.0, 2-hour plasma glucose \geq 11.1 mmol/l), HbA1c criteria (HbA1c \geq 6.5%), self-reported history of diabetes, and/or use of diabetes medication.

[‡] Models were adjusted for (1) season of blood collection, sex, age, family history of diabetes, and BMI; (2) plus leisure time physical activity, dietary habits, alcohol consumption, smoking status, total energy intake, and social class.

[†] Abbreviations: 25(OH)D, 25-hydroxy-vitamin-D; OR, odds ratio; CI, confidence interval; OGTT, oral glucose tolerance test; HbA1c, glycosylated haemoglobin.

^{††} Models were adjusted for season of blood collection, sex, age, family history of diabetes, BMI, change in weight during follow-up, leisure time physical activity, dietary habits, alcohol consumption, smoking status, total energy intake, social class, randomisation group, and self-reported changes in dietary habits, physical activity, smoking status, and alcohol consumption during follow-up.

SUPPLEMENTARY DATA

Supplementary Table 3. Multiple logistic regression analyses of the prospective association between baseline 25(OH)D status and 5 year diabetes incidence.

Diabetes outcome	25(OH)D* status	Diabetes incidence	Risk of incident diabetes (OR (95% CI))			
	nmol/l	% (n/n _{total})†	crude	Adjusted (1)	Adjusted (2)	Adjusted (3)
OGTT criteria§	<25	5.5 (27/491)	2.87 (1.46;5.62)	2.51 (1.24;5.05)	2.59 (1.19;5.66)	2.49 (1.09;5.71)
	≥ 25-50	3.8 (54/1408)	1.97 (1.07;3.63)	1.75 (0.92;3.30)	1.76 (0.87;3.56)	1.79 (0.85;3.76)
	≥ 50-75	3.2 (38/1193)	1.62 (0.86;3.07)	1.63 (0.85;3.15)	1.94 (0.95;3.97)	1.83 (0.86;3.90)
	≥ 75	2.0 (13/654)	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)
		P=0.012	P _{trend} =0.001	P _{trend} =0.013	P _{trend} =0.047	P _{trend} =0.058
	Per 10 nmol/l increase		0.89 (0.83;0.96)	0.92 (0.85;0.99)	0.92 (0.85;1.01)	0.92 (0.84;1.01)
HbA1c criteria	<25	3.5 (17/486)	P=0.002 1.61 (0.79;3.25)	P=0.023 1.35 (0.65;2.80)	P=0.065 1.48 (0.66;3.33)	P=0.080 1.36 (0.57;3.27)
	≥ 25-50	3.7 (53/1444)	1.69 (0.95;3.02)	1.49 (0.81;2.74)	1.38 (0.70;2.71)	1.46 (0.72;2.97)
	≥ 50-75	2.4 (29/1223)	1.08 (0.57;2.02)	1.04 (0.55;2.00)	1.09 (0.54;2.23)	1.00 (0.47;2.16)
	≥ 75	2.2 (15(680)	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)
		P=0.12	P _{trend} =0.036	P _{trend} =0.17	P _{trend} =0.23	P _{trend} =0.23
	Per 10 nmol/l increase		0.93 (0.86;1.00)	0.95 (0.88;1.03)	0.95 (0.87;1.04)	0.95 (0.87;1.05)
			P=0.045	P=0.23	P=0.27	P=0.33

^{*}Abbreviations: 25(OH)D, 25-hydroxy-vitamin-D;OGTT, oral glucose tolerance test; HbA1c, glycosylated haemoglobin; OR, odds ratio; CI, confidence interval.

[†] N_{total} in 25(OH)D subgroups may differ due to missing information on OGTT or HbA1c.

[‡] Models were adjusted for (1) season of blood collection, sex, age, family history of diabetes, BMI, and change in weight during follow-up; (2) plus leisure time physical activity, dietary habits, alcohol consumption, smoking status, total energy intake, and social class; (3) plus randomisation group, and self-reported changes in dietary habits, physical activity, smoking status, and alcohol consumption during follow-up.

[§] Incident diabetes according to OGTT criteria was defined as fasting plasma glucose \geq 7.0, 2-hour plasma glucose \geq 11.1 mmol/l, self-reported development of diabetes during follow-up, or use of diabetes medication among those without diabetes according to OGTT criteria at baseline. Incident diabetes according to HbA1c criteria was defined as HbA1c \geq 6.5% self-reported development of diabetes during follow-up, or use of diabetes medication among those without diabetes according to HbA1c criteria at baseline.